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Most logics studied in, say, the description logics community are logics that deal
only with binary relations.

Is there an inherent issue in using relations of higher arity? For example, is the
complexity of basic reasoning problems that much harder with higher arity relations?
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Deterministic sample of recent results

▶ (Hella & Kuusisto, 2014) introduced the uniform one-dimensional fragment
U1, which is a polyadic extension of FO2.

In (Kieronski & Kuusisto, 2014) it
was established that complexity of satisfiability is the same for both of these
logics.

▶ (Kieronski, 2019) considered guarded U1 and showed that its satisfiability
problem is NExpTime-complete. Guarded FO2 has ExpTime-complete
satisfiability problem.

▶ (Bednarczyk, 2021) considered guarded forward fragment GFF, which is a
polyadic extension of ALC with global diamond. Complexities of satisfiability
and CQ-entailment coincide.
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Polyadic modal logics

“Higher-arity” versions of modal logics.

Let R be a (k + 1)-ary relation. M,w ⊩ ⟨R⟩(ψ1, . . . , ψk ) iff there exists
(w ,w1, . . . ,wk ) ∈ RM s.t. M,wℓ ⊩ ψℓ, for every 1 ≤ ℓ ≤ k

(Iso-Tuisku & Kuusisto, 2021) argue that polyadic modal logics provide a nice way
of extending modal logics to higher-arity setting in a manner which often preserves
complexity of basic reasoning problems.

E.g., polyadic extension of ML + inverses is PML + permutations. Both have
PSpace-complete satisfiability problems.

This paper: New results on the complexity of polyadic Boolean modal logics!
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Boolean modal logics

Main idea: Diamonds can contain Boolean combinations of relations.

Example

1. M,w ⊩ ⟨¬R⟩p iff there exists (w , v) ̸∈ RM s.t. M, v ⊩ p.

2. M,w ⊩ ⟨R ∩ S⟩p iff there exists (w , v) ∈ (RM\SM) s.t. M, v ⊩ p.

Theorem (Lutz & Sattler, 2000)

▶ The satisfiability problem of ML(¬) is ExpTime-complete.

▶ The satisfiability problem of ML(¬,∩) is NExpTime-complete.
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Further operators

Lets throw in two additional operators: s and I.

Example

1. M,w ⊩ ⟨sR⟩p iff there exists (v ,w) ∈ RM s.t. M, v ⊩ p.

2. M,w ⊩ ⟨IR⟩p iff (w ,w) ∈ RM and M,w ⊩ p.

Theorem (Lutz et. al., 2001)

1. ML(I, s,¬,∩) is equi-expressive with FO2 on the level of sentences.

2. Limit attention to formulas in which at most c binary relations occur, c
being a fixed constant. Then the satisfiability problem of ML(I, s,¬,∩) is
ExpTime-complete.
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Polyadic Boolean modal logics

Replace ML(s,¬,∩) with PML(σ,¬,∩), where σ means that we have access to
arbitrary permutations.

Example
Consider the permutation σ : (1 2 3) 7→ (3 1 2). M,w ⊩ ⟨¬σR⟩p iff there exists
(w1,w2,w) ̸∈ RM s.t. M,w1 ⊩ p and M,w2 ⊩ p.

Fact
The satisfiability problem for PML(σ,¬,∩) is NExpTime-complete.
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New complexity results

Theorem

1. Model checking problem for PML(σ,¬,∩) is PTime-complete.

2. The satisfiability problem of PML(¬) is ExpTime-complete.

3. Let c ≥ 0 be a fixed constant. Limit attention to those formulas of
PML(σ,¬,∩) in which at most c relations occur and the arity of each
relation is at most c. Then the satisfiability problem of PML(σ,¬,∩) is
ExpTime-complete.
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Reduction to polyadic modal logic with global diamond

PML + ⟨E⟩ is the extension of polyadic modal logic with global diamond.

M,w ⊩ ⟨E⟩ψ iff there exists v ∈ dom(M) s.t. M, v ⊩ ψ

Fact
The satisfiability problem of PML + ⟨E⟩ is ExpTime-complete.

Main technique: reduce the satisfiability problems of PML(¬) and PML(σ,¬,∩)
to that of PML + ⟨E⟩.
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Associate to each relation symbol R that occurs in φ a
(unique) fresh relation symbol R and replace each ¬R in φ with R. Let t(φ)
denote the resulting formula.

One can construct a formula η ∈ PML + ⟨E⟩ of size |φ|O(1) with these properties:

1. Every model of φ can be extended to a model of t(φ) ∧ η.

2. If t(φ) ∧ η is satisfiable, then it is satisfiable in a model M where
RM ∪ RM = dom(M)ar(R), for every R. This model can be massaged to a
model of φ.

η :=
∧

⟨R⟩(ψ1,...,ψk ),
⟨R⟩(χ1,...,χk )
∈Subf(t(φ))

Å
⟨E⟩(¬⟨R⟩(ψ1, . . . , ψk ) ∧ ¬⟨R⟩(χ1, . . . , χk ))

→
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1≤ℓ≤k
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Some open problems

1. Is the satisfiability problem of PML(σ,¬) ExpTime-complete?

2. Fix some constant c ≥ 0 and consider only formulas in which at most c
relation symbols occur (no constant bound on the arities). Is the satisfiability
problem of PML(σ,¬,∩) in ExpTime with this restriction?

3. Let c ≥ 0 be a fixed constant. Limit attention to formulas in which at most
c relations occur and the arity of each relation is at most c. Is the
satisfiability problem of PML(I, σ,¬,∩) ExpTime-complete?

Thanks! :–)
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