Expressing boundedness in static computational logic

Reijo Jaakkola

Mathematics Research Centre, Tampere University, Finland

January 30, 2025

Reijo Jaakkola (Tampere University)

Expressing boundedness in SCL

Overview

1 SCL

- 2 SCL vs. LFP
- 3 Bounded SCL
- 4 BndSCL \leq SCL
- 5 Recursively saturated structures
- 6 α -bounded SCL
- On Lindström's second theorem
 - 8 Conclusions

SCL

- 2 SCL vs. LFP
- 3 Bounded SCL
- $\textbf{ BndSCL} \leq \textbf{SCL}$
- 5 Recursively saturated structures
- 6 α -bounded SCL
- 7 On Lindström's second theorem
- 8 Conclusions

Definition

Fix a countable set LBS = { $L_n \mid n \in \mathbb{N}$ } of label symbols. For reach (relational) vocabulary τ the set of formulas $SCL[\tau]$ is defined by

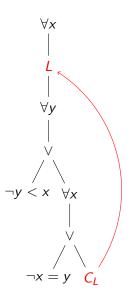
$$\phi ::= x = y \mid R(\overline{x}) \mid C_L \mid \neg \phi \mid \phi \land \phi \mid \exists x \phi \mid L \phi,$$

where $R \in \tau$ and $L \in LBS$.

- The semantics of SCL are defined in terms of evaluation (or semantical) games G_∞(𝔅, s, φ).
- These games have two players, the Verifier and Falsifier.
- If the Verifier has a winning strategy in $\mathcal{G}_{\infty}(\mathfrak{A}, s, \varphi)$, then we write

 $\mathfrak{A}, \mathbf{s} \models_{\infty} \varphi$

How to define well-foundedness



3 N 3

1 SCL

- 3 Bounded SCL
- $\textbf{ BndSCL} \leq \mathsf{SCL}$
- 5 Recursively saturated structures
- 6 α -bounded SCL
- 7 On Lindström's second theorem
- 8 Conclusions

Definition

The logic LFP_1 is defined via the following formula construction rules.

- Every FO-formula is in LFP₁.
- If X is a k-ary relation symbol, φ(x₁,...,x_k) is an FO-formula in which X occurs only positively and u₁,..., u_k are variables, then [LFP_{X,x̄}φ]ū is in LFP₁.
- LFP_1 is closed under $\land, \lor, \exists, \forall$.

Theorem (Kleene 1955, Spector 1961)

 LFP_1 -definable relations over $(\mathbb{N}, +, \cdot, 0, 1)$ coincide with the Π_1^1 -relations.

Theorem (Immermann 1982)

 $LFP_1 \equiv LFP$ over finite structures.

< □ > < □ > < □ > < □ > < □ > < □ >

э

Expressive power of SCL

• Formulas of LFP₁ can be translated to SCL in a straightforward way. E.g.

$$[\mathrm{LFP}_{X,x,y}(E(x,y) \lor \exists z(E(z,y) \land X(x,z)))]xy$$

translates to

$$L(E(x,y) \vee \exists z (E(z,y) \land \exists y (y = z \land C_L)))$$

Theorem

 $\mathrm{SCL} \equiv \mathrm{LFP}_1$

- It follows that $SCL < \forall SO$.
- A result of Kozen implies that over countable structures we have that

$$SCL +$$
 "dictionaries" $\equiv \forall SO$

Algorithm 1 IND-program corresponding to the sentence

$$\forall x L \forall y (y < x \rightarrow \forall x (x = y \rightarrow C_L)).$$

- 1: Universally choose x
- 2: Universally choose y
- 3: if $y \ge x$ then
- 4: accept
- 5: end if
- 6: Universally choose x
- 7: if $x \neq y$ then
- 8: accept
- 9: end if
- 10: **goto** Step 2

SCL SCL vs. LFP

- Bounded SCL
- 5 Recursively saturated structures
- 6 α -bounded SCL
- 7 On Lindström's second theorem
- 8 Conclusions

Definition

- A reachability game is a two-player game played on a directed graph G = (V, E). The game is defined as follows:
 - The vertices V are partitioned into V₁ and V₂, where V₁ consists of the vertices controlled by Player 1 (in this talk Verifier) and V₂ consists of the vertices controlled by Player 2 (Falsifier).
 - The game starts at an initial vertex v₀ ∈ V, and the players take turns choosing edges to traverse, based on the partitioning of V.

A winner of a finite (maximal) play is determined as follows: if the final node is controlled by the Verifier, Falsifier wins, and otherwise the Verifier wins. Neither player wins infinite plays.

< ロト < 同ト < ヨト < ヨト

- Let \mathcal{G} be a reachability game and let σ be a winning strategy for $P \in \{\text{Verifier}, \text{Falsifier}\}$. The set of plays of \mathcal{G} where P follows σ is a well-founded tree.
- We define $rank(\sigma)$ as the height of this tree (an ordinal).
- Furthermore, we define

 $\operatorname{rank}_{P}(\mathcal{G}) := \min\{\operatorname{rank}(\sigma) \mid \sigma \text{ is a winning strategy for } P\}.$

If P does not have a winning strategy in \mathcal{G} , then $\operatorname{rank}_{P}(\mathcal{G}) = \infty$.

• Let \mathfrak{A} be a structure, *s* an assignment φ a sentence of SCL. Given an ordinal α we write

$$\mathfrak{A}, \mathbf{s} \models_{\mathbf{\alpha}} \varphi$$

iff the Verifier-rank of $\mathcal{G}_{\infty}(\mathfrak{A}, s, \varphi)$ is $< \alpha$.

• BndSCL is a semantical variant of SCL obtained by replacing

 \models_{∞} with \models_{ω}

Example

Consider the sentence

 $\varphi := \forall x \forall y (x = y \lor L(E(x, y) \lor \exists z (E(x, z) \land \exists x (x = z \land C_L))))$

of SCL and a graph G.

- $G \models_{\infty} \varphi$ iff G is connected.
- $G \models_{\omega} \varphi$ iff there exist $n \in \mathbb{N}$ such that the distance between any two nodes is at most n.

3

Theorem

 $\mathrm{BndSCL} < \mathrm{SCL}.$

< 4[™] >

æ

- Goranko, Hella, Kuusisto and Rönnholm have studied extensively bounded variants of standard modal logics with recursion, such as CTL, ATL and μ -calculus.
- A common theme has been that the bounded variants are incomparable with the original logics with respect to expressive power.
- Furthermore, while the original logics have the finite model property, the bounded variants no longer enjoy it.

Given a pointed Kripke model (𝔐, w), we say that it has the bounded dead-end property, if there exists n ∈ N such that no matter where we go from w we will eventually reach a dead-end in at most n-steps.

Proposition (Folklore)

The class of pointed Kripke-models which have the bounded dead-end property is not definable in MSO.

• This class is definable if we can universally quantify over binary relations.

1 SCL

- 2 SCL vs. LFP
- 3 Bounded SCL
- 4 BndSCL \leq SCL
 - 5 Recursively saturated structures
- 6 α -bounded SCL
- 7 On Lindström's second theorem
- 8 Conclusions

Comparing ranks of reachability games

- Let G_1 and G_2 be reachability games. We can define a new game $\mathcal{I}(G_1, G_2)$ as follows.
 - Two players, Verifier and Falsifier.
 - Positions are pairs (v, v'), where v is a position in G₁ and v' is a position in G₂.
 - Given a position (v, v'), the players first make a move in \mathcal{G}_1 and then in \mathcal{G}_2 giving us the next position (u, u').
 - Game ends when one of the nodes in (v, v') is a dead-end.

Proposition

Suppose that

$$\operatorname{rank}_{\operatorname{\textit{Falsifier}}}(\mathcal{G}_1) \leq \operatorname{rank}_{\operatorname{\textit{Verifier}}}(\mathcal{G}_2) \text{ and } \operatorname{rank}_{\operatorname{\textit{Falsifier}}}(\mathcal{G}_1) < \infty.$$

Then Falsifier has a winning strategy in $\mathcal{I}(\mathcal{G}_1, \mathcal{G}_2)$.

< □ > < □ > < □ > < □ > < □ > < □ >

- Let us modify the winning conditions of the Verifier in I(G₁, G₂): if the players reach a position (v, v'), where one of the nodes is a dead-end, the winner is determined as follows.
 - If either v or v' is a dead-end where it is Falsifier's turn to make a move, Verifier wins.
 - Otherwise the Falsifier wins.

Proposition

Suppose that

$$\operatorname{rank}_{\mathsf{Falsifier}}(\mathcal{G}_1) = \operatorname{rank}_{\mathsf{Verifier}}(\mathcal{G}_2) < \omega$$

Then Verifier has a winning strategy in $\mathcal{I}(\mathcal{G}_1, \mathcal{G}_2)$.

Proposition

Suppose that

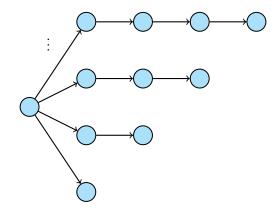
$$\omega \leq \operatorname{rank}_{\mathsf{Falsifier}}(\mathcal{G}_1) = \operatorname{rank}_{\mathsf{Verifier}}(\mathcal{G}_2) < \infty$$

Then Falsifier has a winning strategy in $\mathcal{I}(\mathcal{G}_1, \mathcal{G}_2)$.

- (日)

э

Comparing ranks of reachability games



3 x 3

Given two sentences φ and ψ of SCL, it is straightforward to write a sentence [φ : ψ] of SCL with the property

$$\mathfrak{A}\models_{\infty} [\varphi:\psi] \Leftrightarrow$$

Verifier has a winning strategy in $\mathcal{I}(\mathcal{G}_{\infty}(\mathfrak{A},\varphi),\mathcal{G}_{\infty}(\mathfrak{A},\psi)).$

Given a sentence φ of SCL, we can construct another sentence φ^d such that the Falsifier-rank of G_∞(𝔅, φ^d) is the same as the Verifier-rank of G_∞(𝔅, φ).

Now

$$\mathfrak{A}\models_{\omega}\varphi\Leftrightarrow\mathfrak{A}\models_{\infty}\varphi\wedge[\varphi^{d}:\varphi].$$

1 SCL

- 2 SCL vs. LFP
- Bounded SCL
- $\textbf{9} \quad \mathsf{BndSCL} \leq \mathsf{SCL}$
- 5 Recursively saturated structures
- 6 α -bounded SCL
- 7 On Lindström's second theorem
- 8 Conclusions

• An **elementary type** is a set Γ of FO-formulas which all have the same (finite) set of free variables.

Definition

A structure \mathfrak{A} is called **recursively saturated**, if for every finite assignment r over A we have that each recursive elementary type Γ which is finitely consistent with (\mathfrak{A}, r) is realized in (\mathfrak{A}, r) .

• Examples include $(\mathbb{Q}, <), (\mathbb{C}, +, \cdot)$, which are also ω -saturated.

Theorem

If ${\mathfrak A}$ is recursively saturated, then for every assignment s and a formula φ of ${\rm SCL}$ we have that

$$\mathfrak{A}, \boldsymbol{s} \models_{\infty} \varphi \Leftrightarrow \mathfrak{A}, \boldsymbol{s} \models_{\omega} \varphi$$

In particular, $BndSCL \equiv SCL$ over recursively saturated structures.

1 SCL

- 2 SCL vs. LFP
- 3 Bounded SCL
- $\textbf{ BndSCL} \leq \textbf{SCL}$
- 5 Recursively saturated structures
- **6** α -bounded SCL
 - 7 On Lindström's second theorem
 - 8 Conclusions

• Given an ordinal $\alpha,\,\alpha SCL$ is a semantical variant of SCL obtained by replacing

 \models_{∞} with \models_{α} .

- Example: let φ be a formula of SCL which defines the class of well-founded linear orders. Now 𝔅 ⊨_α φ iff the order type of every descending sequence is less than α.
- Question: what is the smallest ordinal α for which $\alpha SCL \leq SCL$?

- CL is obtained from SCL by extending with the capability to "modify" the underlying structure.
- For each $\alpha < \omega_1^{\rm CK}$ we have that $\alpha {\rm CL} \leq {\rm CL}$.
- Question: what is the smallest ordinal α for which $\alpha CL \not\leq CL$?

1 SCL

- 2 SCL vs. LFP
- 3 Bounded SCL
- $\textbf{ BndSCL} \leq \mathsf{SCL}$
- 5 Recursively saturated structures
- 6 α -bounded SCL
- 7 On Lindström's second theorem

3 Conclusions

Theorem (Lindström, 1969)

Let \mathcal{L} be an effective regular logic such that $FO \leq_{eff} \mathcal{L}$. Suppose that \mathcal{L} has the countable downwards Löwenheim-Skolem property and its validity problem is recursively enumerable. Then $\mathcal{L} \equiv_{eff} FO$.

• SCL is not a regular logic, because it is not closed under negation.

Definition

Let $\mathcal{L} = (L, \models_{\mathcal{L}})$ be an effective logic. We say that \mathcal{L} has projective negation, if for every finite set $\tau \subseteq \text{dom}(L)$ there exists a symbol set $\tau \subseteq \xi \subseteq \text{dom}(L)$ and $\chi \in L(\xi)$ such that for every ξ -structure \mathfrak{A} we have that

$$\mathfrak{A}\models_{\mathcal{L}} \chi \text{ iff } \mathfrak{A} \not\models_{\mathcal{L}} \varphi.$$

• SCL has projective negation, because the complement of an SCL-definable class is definable in ∃SO.

Theorem

Let \mathcal{L} be an effective semi-regular logic such that $FO \leq_{eff} \mathcal{L}$. Suppose that \mathcal{L} has projective negation, the countable downwards Löwenheim-Skolem property and that its FO-consequences are axiomatizable. Then $\mathcal{L} \equiv FO$.

 \bullet In particular, for every effective semi-regular logic ${\cal L}$ for which

 $\mathrm{FO} \leq_{\mathsf{eff}} \mathcal{L} \leq \mathrm{SCL},$

we have that either $FO \equiv \mathcal{L}$ or there is a sentence of \mathcal{L} whose FO-consequences are not RE.

1 SCL

- 2 SCL vs. LFP
- 3 Bounded SCL
- $\textbf{ BndSCL} \leq \mathsf{SCL}$
- 5 Recursively saturated structures
- 6 α -bounded SCL
- 7 On Lindström's second theorem

8 Conclusions

- BndSCL < SCL \equiv LFP₁ $< \forall$ SO.
- Over recursively saturated structures $BndSCL \equiv SCL$.
- There is no logic between FO and SCL which is stronger than FO and whose FO-consequences are axiomatizable.
- Question: what is the smallest ordinal α for which $\alpha SCL \not\leq SCL$?

Thanks!