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Fragments of first-order logic

Classifying fragments F of first-order logic FO based on whether their satisfiability
problem is decidable:

given φ ∈ F , is φ satisfiable?

Several fragments of FO known that have a decidable satisfiability problem:

monadic first-order logic, two-variable logic, guarded fragment, triguarded
fragment, unary negation fragment, guarded negation fragment, uniform
one-dimensional fragment, fluted logic, ordered logic, Maslov fragment, Herbrand
fragment, positive first-order logic, . . .
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The seminal classical decision problem, completed in the 80s, classifies prefix classes
of FO according to whether they are decidable or not.

So far there has been no
such program for classifying other fragments of FO.

In this work we present a novel approach towards classifying fragments of FO. Our
approach is based on relational algebras.
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Relational operators

If k ∈ Z+, then a k-ary AD-relation over a set A is a pair (X , k), where X ⊆ Ak .

Point is that we want to distinguish (∅, 1) from (∅, 2).

Definition (Relational operator)
Given a set A, let AD(A) denote the set of all AD-relations over A. A k-ary
relational operator F is a mapping (proper class) which associates to every set A a
function FA

FA : AD(A)k → AD(A)
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Examples

Equality e, which is 0-ary:
eA = {(a, a) | a ∈ A}

Cyclic permutation p:
pA(R) = {(ak , a1, . . . , ak−1) | (a1, . . . , ak ) ∈ R}

Swap permutation s:
sA(R) = {(a1, . . . , ak−2ak , ak−1) | (a1, . . . , ak ) ∈ R}}

Identification I:
IA(R) = {(a1, ..., ak−1)}|(a1, ..., ak ) ∈ R and ak−1 = ak }

Complementation ¬:
¬A(R) = the complement of R

Join J:
JA(R, S) = {(a, b) | a ∈ R and b ∈ S}

Projection ∃:
∃A(R) = {(a1, ..., ak−1)} | (a1, ..., ak ) ∈ R}
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General relational algebras

Definition
Let F be a set of relational operators and let σ be a relational vocabulary. The set
of terms GRA(F)[σ] is defined by the following grammar.

T ::= R | F (T , ..., T︸ ︷︷ ︸
ar(F )-times

),

where R ∈ σ and F ∈ F .

Definition
Given a model A of vocabulary σ and term T ∈ GRA(F)[σ], its interpretation
JT KA is defined recursively as follows.

1. JRKA := (RA, ar(R))

2. JF (T1, ..., Tn)KA := FA(JT1KA, ..., JTnKA)
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Algebraic characterisation of first-order logic

Each formula φ(x1, . . . , xk ) of FO (or any logic for that matter) defines in a natural
way an AD-relation over each structure A:

φA = ({(a1, . . . , ak ) ∈ Ak | A |= φ(a1, . . . , ak )}, k)

Hence one can compare the expressive powers of logics and algebras in a natural
way.

Theorem
GRA(e, p, s, I, ¬, J, ∃) is equi-expressive with FO.
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Algebraic characterisations of fragments

The suffix intersection ∩̇ is defined as follows: include in (R∩̇S) every tuple of the
higher-arity relation (say, R) that has as suffix a tuple of the smaller-arity relation.

The one-dimensional negation ¬1 is defined by setting that ¬1R is empty if
ar(R) > 1, and ¬R otherwise.

Theorem

1. FL is equi-expressive with GRA(¬, ∩̇, ∃).

2. FO2 is equi-expressive with GRA(e, s, ¬, ∩̇, ∃) over binary vocabularies.

3. GF is equi-expressive with GRA(e, p, s, \, ∩̇, ∃) on the level of sentences.

4. UNFO is equi-expressive with GRA(e, p, s, I, ¬1, J, J, ∃), where J is the dual
operator of J.

In all of these cases the translations are poly-time computable, so the complexities
coincide.
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Fragments of GRA(e, p, s, I, ¬, J , ∃)

What are the complexities of fragments of GRA(e, p, s, I, ¬, J, ∃)?

Theorem

1. GRA(p, s, I, ¬, J, ∃) is Π0
1-complete. In fact, already its fragment

GRA(p, I, ¬, J, ∃) is Π0
1-hard.

2. GRA(e, p, s, ¬, J, ∃) is NP-complete.

3. GRA(e, p, s, I, J, ∃) is trivial.

4. GRA(e, p, s, I, ∃) is solvable by a finite automaton.

5. GRA(e, p, s, I, J) is NP-complete. In fact, already its fragment GRA(p, I, J)
is NP-complete.

GRA(e, s, I, ¬, J, ∃) is decidable, but no tight upper bound on the complexity.
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Combining different operators

It is also natural to look at different combinations of relational operators.

Theorem
GRA(e, s, \, ∩̇, ∃) is ExpTime-complete.

Several results of this flavour were also established in (Jaakkola, 2021), where it
was proven that e.g. GRA(s, ¬, ∩̇, ∃) is Π0

1-complete.
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Some open problems

1. Is the satisfiability problem of GRA(e, s, I, ¬, J, ∃) solvable in exponential
time?

2. Is there a finite set of relational operators {f1, . . . , fn} s.t. GRA(f1, . . . , fn) is
equi-expressive (at least on the level of sentences) with the guarded negation
fragment?

3. Find natural algebraic properties P s.t. if every relational operator in
{f1, . . . , fn} has property P, then the satisfiabiltiy problem of
GRA(f1, . . . , fn) is decidable.

Thanks! :–)



Complexity classifications via
algebraic logic

Reijo Jaakkola

Background

General relational algebras

Algebraic characterisations

Classifying fragments

Open problems

Some open problems

1. Is the satisfiability problem of GRA(e, s, I, ¬, J, ∃) solvable in exponential
time?

2. Is there a finite set of relational operators {f1, . . . , fn} s.t. GRA(f1, . . . , fn) is
equi-expressive (at least on the level of sentences) with the guarded negation
fragment?

3. Find natural algebraic properties P s.t. if every relational operator in
{f1, . . . , fn} has property P, then the satisfiabiltiy problem of
GRA(f1, . . . , fn) is decidable.

Thanks! :–)



Complexity classifications via
algebraic logic

Reijo Jaakkola

Background

General relational algebras

Algebraic characterisations

Classifying fragments

Open problems

Some open problems

1. Is the satisfiability problem of GRA(e, s, I, ¬, J, ∃) solvable in exponential
time?

2. Is there a finite set of relational operators {f1, . . . , fn} s.t. GRA(f1, . . . , fn) is
equi-expressive (at least on the level of sentences) with the guarded negation
fragment?

3. Find natural algebraic properties P s.t. if every relational operator in
{f1, . . . , fn} has property P, then the satisfiabiltiy problem of
GRA(f1, . . . , fn) is decidable.

Thanks! :–)



Complexity classifications via
algebraic logic

Reijo Jaakkola

Background

General relational algebras

Algebraic characterisations

Classifying fragments

Open problems

Some open problems

1. Is the satisfiability problem of GRA(e, s, I, ¬, J, ∃) solvable in exponential
time?

2. Is there a finite set of relational operators {f1, . . . , fn} s.t. GRA(f1, . . . , fn) is
equi-expressive (at least on the level of sentences) with the guarded negation
fragment?

3. Find natural algebraic properties P s.t. if every relational operator in
{f1, . . . , fn} has property P, then the satisfiabiltiy problem of
GRA(f1, . . . , fn) is decidable.

Thanks! :–)


	Background
	General relational algebras
	Algebraic characterisations
	Classifying fragments
	Open problems

