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Explainability and interpretability in machine learning

In machine learning the goal is to learn algorithms/models/classifiers from data.

A practical challenge is that these classifiers are often black boxes.

Essentially two options for overcoming these challenges: develop methods for either explaining
classifiers or for producing classifiers that are inherently interpretable.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) Explaining classifiers and data via propositional logic November 23, 2023 3 / 26

reijo.jaakkola@tuni.fi


Explainability and interpretability in machine learning

In machine learning the goal is to learn algorithms/models/classifiers from data.

A practical challenge is that these classifiers are often black boxes.

Essentially two options for overcoming these challenges: develop methods for either explaining
classifiers or for producing classifiers that are inherently interpretable.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) Explaining classifiers and data via propositional logic November 23, 2023 3 / 26

reijo.jaakkola@tuni.fi


Explainability and interpretability in machine learning

In machine learning the goal is to learn algorithms/models/classifiers from data.

A practical challenge is that these classifiers are often black boxes.

Essentially two options for overcoming these challenges: develop methods for either explaining
classifiers or for producing classifiers that are inherently interpretable.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) Explaining classifiers and data via propositional logic November 23, 2023 3 / 26

reijo.jaakkola@tuni.fi


Propositional logic

In two recent works — one published in RCRA 2022 and the second one in JELIA 2023 — we
investigated both approaches using propositional logic.

Given a finite set Φ of proposition symbols, we use PL[Φ] to denote the set of formulas
generated by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | φ ∧ φ,

where p ∈ Φ. The size size(φ) of φ is defined as the number of proposition symbols + the
number of connectives that occur in φ.

Formulas of PL[Φ] are evaluated on Φ-valuations v , i.e., mappings v : Φ → {0, 1}.

Formulas ∼ classifiers and valuations ∼ data points.
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Explaining classifiers: motivating examples

Example
1 Consider the following valuation v : {p, q, r} → {0, 1}:

v(p) = 1, v(q) = 1, v(r) = 0

Let φ := p ∧ (q ∨ ¬r). Clearly v(φ) = 1, i.e., φ accepts the valuation v . But why? One possible
explanation for this is to note that φ accepts any valuation which maps p and q to one.

2 On the other hand, consider the following valuation v : {p, q, r} → {0, 1}:

v(p) = 1, v(q) = 0, v(r) = 1

If φ is the same formula as above, then v(φ) = 0. This time this could be explained by
observing that φ rejects any assignment that maps q to zero and r to one.
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Special explainability problem

Input: a tuple (v , φ, b, k), where

1 v is a Φ-valuation

2 φ is a formula of PL[Φ] such that v(φ) = b

3 k ∈ N

Output: Yes, if there exists a formula (= an explanation) ψ of PL[Φ] with the following properties.

1 size(ψ) ≤ k

2 v(ψ) = b

3 for every Φ-assignment u we have the following implication

u(ψ) = b ⇒ u(φ) = b

Otherwise the answer is No.
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Special explainability problem: examples

Example
1 Consider the following valuation v : {p, q, r} → {0, 1}:

v(p) = 1, v(q) = 1, v(r) = 0

Let φ := p ∧ (q ∨ ¬r). On input (v , φ, 1, 3) the answer is Yes, as witnessed by p ∧ q.

2 Consider the following valuation v : {p, q, r} → {0, 1}:

v(p) = 1, v(q) = 0, v(r) = 1

Let φ be as above. On input (v , φ, 0, 4) the answer is Yes, as witnessed by ¬q ∧ r .
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Useful observation

Lemma (Jaakkola et al., RCRA 2022)
Let (v , φ, b, k) be an input to the special explainability problem. Let ψv denote the conjunction that
corresponds to v: ∧

v(p)=1

p ∧
∧

v(p)=0

¬p

Now, if there is an explanation of size at most k for v(φ) = b, then there is one which is essentially a
subconjunction of ψv .
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Special explainability problem for monotone formulas

Theorem
For monotone formulas the special explainability problem is NP-complete. In fact, the lower bound
holds already for monotone CNF-formulas.

Proof.
Lower bound from the dominating set problem. Let G = (V ,E) be a graph. For each x ∈ V we
associate a propositional symbol px . Consider now the formula

φ :=
∧
x∈V

Å
px ∨

∨
(x,y)∈E

py

ã
and set v(px ) = 1, for every x ∈ V . Now, on input (v , φ, 1, 2k − 1) the answer is Yes iff G has a
dominating set of size at most k.
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Special explainability problem for decision trees

p?

q? r?

1 0 1 0

1 0

1 0 1 0

In [Barceló et al., NeurIPS 2020] it was essentially established that the special explainability
problem for Boolean decision trees is NP-complete. Lower bound is again from the dominating
set problem, but the reduction is quite fancy.
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Special explainability problem for full PL

Theorem (Jaakkola et al., RCRA 2022)
The special explainability problem for PL is Σp

2 -complete.

Proof.
For the lower bound a reduction from Σ2SAT. Fix a quantified Boolean formula

∃p1 . . . ∃pn∀q1 . . . ∀qmθ

and consider the following propositional formula:

φ :=
n∧

i=1

(pi ∨ pi ) ∧
Å n∨

i=1

(pi ∧ pi ) ∨ θ

ã
.

Set v to be a valuation which maps all the propositional symbols to one. Now, on input
(v , φ, 1, 2n − 1) the answer is Yes iff the original instance of Σ2SAT is true.
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Special explainability problem for DNF-formulas

Theorem
The special explainability problem for DNF-formulas and CNF-formulas is Σp

2 -hard.

Can be proved via a reduction from the shortest implicant problem: on input (π, φ, k), where
1 φ is a DNF-formula
2 π is a conjunction of literals and k ∈ N,

decide whether there exists a subconjunction π′ ⊆ π with at most k literals such that π′ |= φ.
Proved in [Umans, 2001] to be Σp

2 -complete.

To get the Σp
2 -hardness for DNF-formulas, one essentially needs to show that the shortest

implicant problem remains Σp
2 -hard even if π is a maximal conjunction of literals.
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Special cases of the special explainability problem

For CNF-formulas the validity problem is solvable in polynomial time, because we can just
check whether all of the clauses contain p and ¬p. Using this, given a conjunction χ and a
CNF-formula φ we can also check χ |= φ in polynomial time.

Theorem (Jaakkola et al., RCRA 2022)
Restrict attention to those instances of the special explainability problem where b = 1. Then the
problem is NP-complete for CNF-formulas.

Corollary (Jaakkola et al., RCRA 2022)
Restrict attention to those instances of the special explainability problem where b = 0. Then the
problem is NP-complete for DNF-formulas.
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Application: How hard it is to explain a random forest?

T1 T2

Majority

T3

Output

Vote Vote Vote

A random forest is essentially a classifier that consists of a set of decision trees. Given an
instance, the trees “vote” on what label the instance should receive.

A very popular machine learning model (e.g., easy to train).

Caveat: much harder to interpretate than decision trees.
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Application: How hard it is to explain a random forest?

Theorem
The special explainability problem for random forests is Σp

2 -complete.

Proof.
A reduction from the case of DNF-formulas. Let φ := t1 ∨ · · · ∨ tm be an arbitrary DNF-formula.
Each ti is just a conjunction of literals and hence can be implemented via a linear size decision tree Ti .
Now, the following is a random forest that is equivalent with φ:

F := {T1, . . . ,Tm,⊤, . . . ,⊤︸ ︷︷ ︸
m-times

}

Thus we can reduce efficiently the SE problem of DNF formulas to that of random forests.
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Application: How hard it is to explain a random forest?
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Related work: PI-explanations

A conjunction π of literals is a prime implicant of an another formula φ, if π |= φ and for every
π′ ⊂ π we have that π′ ̸|= φ.

Lot of recent implementation work on computing prime implicants for Boolean classifiers, see
e.g. [Darwiche, LICS 2023] for references. The related algorithms are not trying to find prime
implicants that are globally optimal.

Related literature also contains results on the computational complexity of determining whether
a given conjunction is a prime implicant. E.g. for arbitrary formulas of propositional logic it is
Dp-complete.
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Explaining data: motivating example

Example
Consider the following (very small) Boolean data set over a vocabulary {p1, p2, p3, q}:

p1 p2 p3 q
1 1 1 1
1 1 0 1
1 0 0 0
0 1 0 0

Using the symbols p1, p2, p3 we would like to predict the value of q.

Based on this data, one formula
that seems to work well is (p1 ∧ p2).
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Theoretical and empirical error

Fix a vocabulary Φ = {p1, . . . , pk } and q ̸∈ Φ. Set Φq := Φ ∪ {q}. We assume an underlying
but unknown probability distribution

µ : {Φq-assignments} → [0, 1]

µ encodes how q depends on the propositions from Φ.

Goal is to find a formula φ of PL[Φ] which minimizes the theoretical (ideal) error:

errµ(φ) := Pr
v∼µ

[v(φ) ̸= v(q)]

Since µ is unknown, we can not calculate errµ(φ) directly. Instead, we approximate it by taking
samples S (= data sets) from µ. We then evaluate formulas based on their empirical error:

errS(φ) :=
1

|S|

∑
v∈S

v(φ)̸=v(q)

1
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Overfitting

No guarantee that errS(φ) is close to errµ(φ), unless the sample S is sufficiently large.

Example
Consider the following sample:

p1 p2 q
1 1 1
1 1 1
0 1 0

Both p1 and
(p1 ∧ p2) ∨ (¬p1 ∧ ¬p2)

obtain good accuracy on this data set. However, we might expect the first formula to perform better
outside this particular sample.

Intuitively, a formula overfits to a sample if it focuses too much on the particular features of
that sample.
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Sample bounds

In principle, overfitting can be avoided by using a large enough sample.

One can even try to
establish formally bounds on how large samples are needed for avoiding overfitting, see
statistical learning theory.

Theorem (Uniform convergence for PL)
Let k ∈ Z+ and δ > 0. If a sample S of size at least

1
2ε2 (5k log(k) + ln(2/δ))

is sampled from µ, then with probability greater than or equal to 1 − δ, every formula φ of PL of size
at most k satisfies |errµ(φ) − errS(φ)| < ε.

Most of the time these type of bounds are not good enough to be practically relevant.
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Cross-validation

Idea: split the original sample into two parts — the training set and the test set — and do the
following for increasing values of k:

1 Find/learn a formula φ of size at most k that has small error over the training set.
2 Check that φ also has a small error over the test set.

Error

Size

Training error

Test error
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How to learn a Boolean formula?

In our JELIA 2023 paper we simply did the following: for increasing values of k, we found a
formula of size at most k which had the smallest possible training error.

Cross-validation was used for determining when the formulas started to overfit.

Computationally very difficult, because of the massive search space.

We tested our Answer Set Programming based implementation on three data sets from the UCI
machine learning repository.

Each data set contained several non-Boolean attributes, so Booleanization was needed.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) Explaining classifiers and data via propositional logic November 23, 2023 22 / 26

reijo.jaakkola@tuni.fi


How to learn a Boolean formula?

In our JELIA 2023 paper we simply did the following: for increasing values of k, we found a
formula of size at most k which had the smallest possible training error.

Cross-validation was used for determining when the formulas started to overfit.

Computationally very difficult, because of the massive search space.

We tested our Answer Set Programming based implementation on three data sets from the UCI
machine learning repository.

Each data set contained several non-Boolean attributes, so Booleanization was needed.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) Explaining classifiers and data via propositional logic November 23, 2023 22 / 26

reijo.jaakkola@tuni.fi


How to learn a Boolean formula?

In our JELIA 2023 paper we simply did the following: for increasing values of k, we found a
formula of size at most k which had the smallest possible training error.

Cross-validation was used for determining when the formulas started to overfit.

Computationally very difficult, because of the massive search space.

We tested our Answer Set Programming based implementation on three data sets from the UCI
machine learning repository.

Each data set contained several non-Boolean attributes, so Booleanization was needed.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) Explaining classifiers and data via propositional logic November 23, 2023 22 / 26

reijo.jaakkola@tuni.fi


How to learn a Boolean formula?

In our JELIA 2023 paper we simply did the following: for increasing values of k, we found a
formula of size at most k which had the smallest possible training error.

Cross-validation was used for determining when the formulas started to overfit.

Computationally very difficult, because of the massive search space.

We tested our Answer Set Programming based implementation on three data sets from the UCI
machine learning repository.

Each data set contained several non-Boolean attributes, so Booleanization was needed.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) Explaining classifiers and data via propositional logic November 23, 2023 22 / 26

reijo.jaakkola@tuni.fi


How to learn a Boolean formula?

In our JELIA 2023 paper we simply did the following: for increasing values of k, we found a
formula of size at most k which had the smallest possible training error.

Cross-validation was used for determining when the formulas started to overfit.

Computationally very difficult, because of the massive search space.

We tested our Answer Set Programming based implementation on three data sets from the UCI
machine learning repository.

Each data set contained several non-Boolean attributes, so Booleanization was needed.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) Explaining classifiers and data via propositional logic November 23, 2023 22 / 26

reijo.jaakkola@tuni.fi


Empirical results

The first data set was the Statlog-German credit data
set, classifies persons based on whether or not it is
“risky” to give them a loan.

1000 data points and 68 attributes.

The following formula of size six

¬ (negative balance ∧ above median loan duration)
∨ employment on managerial level

had 0.27 as its test error.

Naive Bayes classifiers had test error 0.25 and neural
networks 0.24. 2 4 6 8

0.2

0.25

0.3

0.35

size

error
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Empirical results

The second data set was Breast cancer Wisconsin
data set, classifies tumors based on whether or not
they are benign.

683 data points ja 9 attributes.

The following formula of size eight

¬(((p ∧ q) ∨ r) ∧ s)

had 0.047 as its test error.

Naive Bayes classifiers had test error 0.026 and neural
networks 0.032.
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Empirical results

The final data set was the Ionosphere data set,
classifies radar signals based on whether or not they
are “good”.

351 data points and 34 attributes.

The following formula of size seven

((p ∧ q) ∨ r) ∧ s

had 0.14 as its test error.

Naive Bayes classifiers had test error 0.1 and neural
networks 0.04.
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When do we need black box models?

In [Rudin, 2019] it is argued — based on empirical evidence — that for most problems with
“meaningful structured covariates” different machine learning algorithms tend to perform
similarly.

In particular, we might expect that interpretable models achieve similar accuracies as black box
models (such as large neural networks). Our empirical results certainly support this claim.

Thanks! :)
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