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Propositional logic recap

Fix a set τ := {p1, . . . , pd } of propositional variables. The set of formulas of PL[τ ] is generated
via the following grammar:

φ ::= p | ¬φ | (φ ∧ φ) | (φ ∨ φ).

Here p ∈ τ .

Given an assignment
s : τ → {0, 1},

we define recursively s(φ) as follows:
▶ s(¬φ) = 1 iff s(φ) = 0.
▶ s(φ ∧ ψ) = 1 iff s(φ) = 1 and s(ψ) = 1.
▶ s(φ ∨ ψ) = 1 iff s(φ) = 1 or s(ψ) = 1.

The size of a formula φ is defined recursively as follows:
▶ size(p) = 1
▶ size(¬φ) = 1 + size(φ)
▶ size(φ ∧ ψ) = size(φ ∨ ψ) = 1 + size(φ) + size(ψ)

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) Formulas of propositional logic as interpretable classifiers April 9, 2024 2 / 21

reijo.jaakkola@tuni.fi


Propositional logic recap

Fix a set τ := {p1, . . . , pd } of propositional variables. The set of formulas of PL[τ ] is generated
via the following grammar:

φ ::= p | ¬φ | (φ ∧ φ) | (φ ∨ φ).

Here p ∈ τ .

Given an assignment
s : τ → {0, 1},

we define recursively s(φ) as follows:
▶ s(¬φ) = 1 iff s(φ) = 0.
▶ s(φ ∧ ψ) = 1 iff s(φ) = 1 and s(ψ) = 1.
▶ s(φ ∨ ψ) = 1 iff s(φ) = 1 or s(ψ) = 1.

The size of a formula φ is defined recursively as follows:
▶ size(p) = 1
▶ size(¬φ) = 1 + size(φ)
▶ size(φ ∧ ψ) = size(φ ∨ ψ) = 1 + size(φ) + size(ψ)

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) Formulas of propositional logic as interpretable classifiers April 9, 2024 2 / 21

reijo.jaakkola@tuni.fi


Propositional logic recap

Fix a set τ := {p1, . . . , pd } of propositional variables. The set of formulas of PL[τ ] is generated
via the following grammar:

φ ::= p | ¬φ | (φ ∧ φ) | (φ ∨ φ).

Here p ∈ τ .

Given an assignment
s : τ → {0, 1},

we define recursively s(φ) as follows:
▶ s(¬φ) = 1 iff s(φ) = 0.
▶ s(φ ∧ ψ) = 1 iff s(φ) = 1 and s(ψ) = 1.
▶ s(φ ∨ ψ) = 1 iff s(φ) = 1 or s(ψ) = 1.

The size of a formula φ is defined recursively as follows:
▶ size(p) = 1
▶ size(¬φ) = 1 + size(φ)
▶ size(φ ∧ ψ) = size(φ ∨ ψ) = 1 + size(φ) + size(ψ)

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) Formulas of propositional logic as interpretable classifiers April 9, 2024 2 / 21

reijo.jaakkola@tuni.fi


Learning formulas of propositional logic

Using propositional (Boolean) features from a given vocabulary τ we want to predict the value
that a given target feature q will receive.

As an example, consider the following Boolean data set.

p1 p2 p3 q
1 1 1 1
1 1 0 1
1 0 0 0
0 1 0 0

Based on this data, the formula (p1 ∧ p2) seems to predict quite well the value of q.
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Learning formulas of propositional logic

Let
Tτ,q := {s : τ ∪ {q} → {0, 1}}.

There is an unknown probability distribution µ : Tτ,q → [0, 1].

Think τ as the set of features and the assignments s as datapoints.

Goal is to learn a propositional formula φ over τ with small error:

errµ(φ) := Pr
s∈Tτ,q

[s(φ) ̸= s(q)]

Since µ is unknown, this is done using samples S ∼ µn and by minimizing empirical error:

errS(φ) :=
1
n

∑
s∈S

s(φ)̸=s(q)

1
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Example: learning conjunctions [Valiant, 1984]

An algorithm for learning a conjunction over τ = {p1, . . . , pd }:

1 Start with the conjunction
φ := p1 ∧ ¬p1 ∧ · · · ∧ pd ∧ ¬pd

2 When you encounter an assignment s such that s(φ) = 0 and s(q) = 1, then remove each literal
ℓ from φ for which s(ℓ) = 0.

Works well if q is assumed to be equivalent to a conjunction of symbols from τ .

Can be also made to work if q is equivalent to a conjunction plus “noise”.
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Learning general propositional formulas is in general hard

Learning an arbitrary propositional formula over τ requires in general exponentially many
samples, because the VC-dimension of PL[τ ] is 2|τ|.

Restricting attention to formulas of PL[τ ] which are of polynomial size w.r.t. |τ | seems to make
the problem feasible. Indeed, the VC-dimension of this class is only polynomial w.r.t. |τ |. Thus,
in principle, one needs only polynomially many samples.

However, [Kearns and Valiant, 1994] established that — under a standard cryptographic
assumption — polynomial size propositional formulas can not be learned in polynomial time.
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What about real-world?

The previous hardness results are asymptotic in nature.

In [Jaakkola et al., 2023] we implemented an algorithm in ASP which we used to learn formulas
from tabular data sets.

The input of the algorithm is a parameter k and a sample S. Output is a propositional formula
φ of size at most k which has a minimal empirical error among all formulas of size at most k.

Hope was that it would be sufficient to consider small values of k.

Most real-world data sets are not Boolean, so one needs to first booleanize them.
▶ Categorical features can be one-hot encoded.
▶ For continuous features we simply split them at the median.
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Empirical results from [Jaakkola et al., 2023]

The first data set was the Statlog-German credit data
set, classifies persons based on whether or not it is
“risky” to give them a loan.

1000 data points and 68 attributes. The data was split
50-50 to training and testing sets.

The following formula of size six

¬ (negative balance ∧ above median loan duration)
∨ employment on managerial level

had 73% accuracy on the test set.

In the literature e.g. neural networks had obtained
76% test accuracy.

2 4 6 8

0.2

0.25

0.3

0.35

size

error

Test
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Empirical results from [Jaakkola et al., 2023]

The second data set was Breast cancer Wisconsin
data set, classifies tumors based on whether or not
they are benign.

683 data points ja 9 attributes. The data was split
50-50 to training and testing sets.

The following formula of size eight

¬(((p ∧ q) ∨ r) ∧ s)

had 95.3% accuracy on the test set.

In the literature e.g. naive Bayes classifiers had
obtained 97.4% test accuracy. 1 3 5 7 9 11 13 15 17
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Empirical results from [Jaakkola et al., 2023]

The final data set was the Ionosphere data set,
classifies radar signals based on whether or not they
are “good”.

351 data points and 34 attributes. The data was split
50-50 to training and testing sets.

The following formula of size seven

((p ∧ q) ∨ r) ∧ s

had 86% accuracy on the test set.

In the literature e.g. neural networks had obtained
96% test accuracy. 1 3 5 7 9 11
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What we learned from these experiments?

Crude discretization already works quite well.

Already short and interpretable formulas obtain good accuracies.
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Importance of feature selection

Short formulas use only a few number of features.

Instead of regularizing via size, maybe one could just limit the number of features the formulas
are allowed to use?

In fact, already [Holte, 1993] observed that for several real-world datasets one can get pretty
good accuracies by using a single feature (comparable to ones obtained using decision trees).

In [Jaakkola et al., 2024] we investigated an approach based on feature selection in more detail.
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The approach of [Jaakkola et al., 2024]

Given a sample S of assignments over τ ∪ {q}, we first select a small set σ ⊆ τ of “promising”
features. We then compute a DNF-formula over σ which has a minimal empirical error w.r.t. S.

DNF-formulas are formulas of the form

t1 ∨ · · · ∨ tm,

where t1, . . . , tm are conjunctions of literals. Note that each assignment corresponds to a
conjunction of literals.

Given t : σ → {0, 1}, we let

Pr
S

[q|t] :=
number of assignments s in S for which s ↾ σ = t and s(q) = 1

number of assignments s in S for with s ↾ σ = t

The following DNF-formula minimizes empirical error w.r.t. S∨ß
t | Pr

S
[q|t] > 1/2

™
.

Calculating PrS [q|t] from S is trivial.
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conjunction of literals.

Given t : σ → {0, 1}, we let

Pr
S

[q|t] :=
number of assignments s in S for which s ↾ σ = t and s(q) = 1

number of assignments s in S for with s ↾ σ = t

The following DNF-formula minimizes empirical error w.r.t. S∨ß
t | Pr

S
[q|t] > 1/2

™
.

Calculating PrS [q|t] from S is trivial.
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Related approach

[Angelino et al., 2018] investigate learning sparse rule lists which are optimized with respect to
their error and size.

Example of a rule list from [Angelino et al., 2018]:

if (priors> 3) then predict yes

else if (sex is male) and (juvenile crimes> 0) then predict yes

else predict no

Certain type of rule lists are essentially DNF-formulas. E.g., the above rule list corresponds to
the following DNF-formula

(priors > 3) ∨ (sex is male ∧ juvenile crimes > 0)

Since rule lists are optimized w.r.t. their size, the approach is also similar in spirit to that of
[Jaakkola et al., 2023].
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Some experiments using the approach of [Jaakkola et al., 2024]

Data set Our method Random forests XGBoost

BankMarketing 89.5% 89.7% 89.6%

BreastCancer 95.3% 97.1% 96.4%

CongressionalVoting 95.6% 96.3% 96.3%

GermanCredit 71.5% 76.2% 72%

HeartDisease 82.8% 84.2% 81.2%

Hepatitis 85.0% 83.6% 79.7%

StudentDropout 81.0% 87.3% 87.3%

Results from 10-fold cross validation for 7 different data sets. Table contains the average test
accuracies.

For our method we treated the number of used features as a hyperparameter. 10% of the
training set was used as a validation set.

For feature selection we tested F-test, χ2-test and mutual information.
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Some experiments using the approach of [Jaakkola et al., 2024]

Results from Leave-One-Out Cross-Validation (LOOCV) for two high-dimensional data sets.
Features related to gene expression profiles.

Colon, 63 data points and 2000 features. All features were three-valued.
1 [Jaakkola et al., 2024] with F-test and χ2-test: 82.3% accuracy.
2 Random forest with 1000 decision trees: 82.3% accuracy.
3 Logistic regression with ℓ1-regularization: 77.4% accuracy.
4 Support vector machine with linear kernel: 85.5% accuracy.

Leukemia, 73 data points and 7070 features. All features were three-valued.
1 [Jaakkola et al., 2024] with F-test and χ2-test: 97.2% and 81.9% accuracies respectively.
2 Random forest with 1000 decision trees: 98.6% accuracy.
3 Logistic regression with ℓ1-regularization: 95.8% accuracy.
4 Support vector machine with linear kernel: 98.6% accuracy.
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Limits of our method

Limiting the number of used features gives you poor accuracy on tabular data sets where you
actually need to use a large number of features.

Example: Covertype data set, which has 54 features and 423680 data points. Our method
obtained on a 80-20 split an accuracy of 76% while e.g. random forests obtained an accuracy of
96%.

▶ Only 10 features turn out to be useful, but they are real-valued and seem to require very
fine-grained discretization.

▶ E.g. with a 80-20 split a decision tree of depth 10 obtained a test accuracy of 81.4% while a
decision tree of depth 20 obtained a test accuracy of 91.9%.

Even if our method does not produce a good classifier, it is still able to identify interesting
properties from the data set.
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Bonus: estimating best possible accuracy

Given a probability distribution, we might be interested in estimating

err(µ) = min{errµ(φ) | φ ∈ PL[τ ]}.

Natural option is to take a sample S and look at

err(S) := min{errS(φ) | φ ∈ PL[τ ]}.

We have E(err(S)) ≤ err(µ). Unfortunately err(S) is not an unbiased estimator of err(µ).
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Bonus: estimating best possible accuracy

Theorem ([Jaakkola et al., 2023])
Suppose that S ∼ µn. Then

E[err(S)] ≥ err(µ) −
1

√
n

∑
t:τ→{0,1}

»
µ(q|t)(1 − µ(q|t))µ(t)

We have the bound

1
√

n

∑
t:τ→{0,1}

»
µ(q|t)(1 − µ(q|t))µ(t) ≤

1
2

 
2|τ|

n
.

Very pessimistic: matching lower bound is realized by setting µ to be the uniform distribution
over τ ∪ {q}.
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Thanks!
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