
Extensions of two-variable logic

Reijo Jaakkola

Tampere University

December 11, 2020

Background

Theorem (Mortimer 75, Grädel et al. 97)

FO2 has the finite model property and its satisfiability problem is
NexpTime-complete.

Dana Scott proved already in 1962 that equality-free FO2 is
decidable by reducing its satisfiability problem to the
Gödel-Kalmár-Schütte class without equality [∃∗∀2∃∗, all].

Background

Theorem (Mortimer 75, Grädel et al. 97)

FO2 has the finite model property and its satisfiability problem is
NexpTime-complete.

Dana Scott proved already in 1962 that equality-free FO2 is
decidable by reducing its satisfiability problem to the
Gödel-Kalmár-Schütte class without equality [∃∗∀2∃∗, all].

Question

FO2 does not cope well with relations of arity higher than two. For
instance, it can’t even express the property that a ternary relation
is non-empty.

How can we extend the expressive power of FO2 while preserving
decidability?

Question

FO2 does not cope well with relations of arity higher than two. For
instance, it can’t even express the property that a ternary relation
is non-empty.

How can we extend the expressive power of FO2 while preserving
decidability?

This talk

In this talk the problem of finding tame extensions of FO2 will be
approached using an algebraic framework.

We will focus on
extensions of equality-free FO2.

This talk

In this talk the problem of finding tame extensions of FO2 will be
approached using an algebraic framework. We will focus on
extensions of equality-free FO2.

Relational operators

Definition

If k ∈ Z+, then a k-ary AD-relation over a set A is a pair (X , k),
where X ⊆ Ak .

If A is a set, then AD(A) denotes the set of AD-relations over A.

Definition

A k-ary relational operator F is a mapping which associates to
every set A a function FA

FA : AD(A)k → AD(A)

Relational operators

Definition

If k ∈ Z+, then a k-ary AD-relation over a set A is a pair (X , k),
where X ⊆ Ak .

If A is a set, then AD(A) denotes the set of AD-relations over A.

Definition

A k-ary relational operator F is a mapping which associates to
every set A a function FA

FA : AD(A)k → AD(A)

Relational operators

Definition

If k ∈ Z+, then a k-ary AD-relation over a set A is a pair (X , k),
where X ⊆ Ak .

If A is a set, then AD(A) denotes the set of AD-relations over A.

Definition

A k-ary relational operator F is a mapping which associates to
every set A a function FA

FA : AD(A)k → AD(A)

Algebraic way of defining logics

Definition

Let F be a set of operators and let σ be a relational vocabulary.
The set of terms GRA(F)[σ] is defined by the following grammar.

T ::= R | F (T , ..., T),

where R ∈ σ and F ∈ F .

Definition

Given a model A of vocabulary σ and term T ∈ GRA(F)[σ], its
interpretation JT KA is defined recursively as follows.

1 JRKA := RA

2 JF (T1, ..., Tn)KA := FA(JT1KA, ..., JTnKA)

Algebraic way of defining logics

Definition

Let F be a set of operators and let σ be a relational vocabulary.
The set of terms GRA(F)[σ] is defined by the following grammar.

T ::= R | F (T , ..., T),

where R ∈ σ and F ∈ F .

Definition

Given a model A of vocabulary σ and term T ∈ GRA(F)[σ], its
interpretation JT KA is defined recursively as follows.

1 JRKA := RA

2 JF (T1, ..., Tn)KA := FA(JT1KA, ..., JTnKA)

Connection with standard syntax

To compare the expressive power of terms and formulas, we note
that each first-order formula ϕ(vi1 , ..., vik), where i1 ≤ ... ≤ ik ,
defines over each model A an AD-relation

JϕKA = ({(a1, ..., ak) ∈ Ak | A |= ϕ(a1, ..., ak)}, k).

For example the formula R(v1, v2) defines the AD-relation (RA, 2)
and R(v2, v1) defines the AD-relation ((RA)−1, 2).

Connection with standard syntax

To compare the expressive power of terms and formulas, we note
that each first-order formula ϕ(vi1 , ..., vik), where i1 ≤ ... ≤ ik ,
defines over each model A an AD-relation

JϕKA = ({(a1, ..., ak) ∈ Ak | A |= ϕ(a1, ..., ak)}, k).

For example the formula R(v1, v2) defines the AD-relation (RA, 2)
and R(v2, v1) defines the AD-relation ((RA)−1, 2).

Relevant operators

We start by introducing a sufficient set of relational operators for
characterization (roughly) the equality-free FO2.

First we need some operators for expressing atomic formulas.
Given an AD-relation (X , k) over A, where k ≥ 2, we define

s((X , k)) = ({(a1, ..., ak , ak−1) ∈ Ak | (a1, ..., ak−1, ak) ∈ X}, k)

I ((X , k)) = ({(a1, ..., ak−1) ∈ Ak | (a1, ..., ak−1, ak−1) ∈ X}, k − 1)

Now R(v2, v1) can be expressed as sR and R(v1, v1) as IR.

Relevant operators

We start by introducing a sufficient set of relational operators for
characterization (roughly) the equality-free FO2.

First we need some operators for expressing atomic formulas.

Given an AD-relation (X , k) over A, where k ≥ 2, we define

s((X , k)) = ({(a1, ..., ak , ak−1) ∈ Ak | (a1, ..., ak−1, ak) ∈ X}, k)

I ((X , k)) = ({(a1, ..., ak−1) ∈ Ak | (a1, ..., ak−1, ak−1) ∈ X}, k − 1)

Now R(v2, v1) can be expressed as sR and R(v1, v1) as IR.

Relevant operators

We start by introducing a sufficient set of relational operators for
characterization (roughly) the equality-free FO2.

First we need some operators for expressing atomic formulas.
Given an AD-relation (X , k) over A, where k ≥ 2, we define

s((X , k)) = ({(a1, ..., ak , ak−1) ∈ Ak | (a1, ..., ak−1, ak) ∈ X}, k)

I ((X , k)) = ({(a1, ..., ak−1) ∈ Ak | (a1, ..., ak−1, ak−1) ∈ X}, k − 1)

Now R(v2, v1) can be expressed as sR and R(v1, v1) as IR.

Relevant operators

We start by introducing a sufficient set of relational operators for
characterization (roughly) the equality-free FO2.

First we need some operators for expressing atomic formulas.
Given an AD-relation (X , k) over A, where k ≥ 2, we define

s((X , k)) = ({(a1, ..., ak , ak−1) ∈ Ak | (a1, ..., ak−1, ak) ∈ X}, k)

I ((X , k)) = ({(a1, ..., ak−1) ∈ Ak | (a1, ..., ak−1, ak−1) ∈ X}, k − 1)

Now R(v2, v1) can be expressed as sR and R(v1, v1) as IR.

Relevant operators

We will also need operators for boolean combinations.

Given
AD-relations (X , k) and (Y , `), where k = `, we define

∩((X , k), (Y , `)) = (X ∩ Y , k).

On the other hand, if ` = 1, we define

C ((X , k), (Y , `)) = ({a ∈ X | ak ∈ Y }, k).

Now R(v1, v2) ∧ S(v1, v2) can be expressed as (R ∩ S), and
R(v1, v2) ∧ S(v2) can be expressed as C (R,S).

Relevant operators

We will also need operators for boolean combinations. Given
AD-relations (X , k) and (Y , `), where k = `, we define

∩((X , k), (Y , `)) = (X ∩ Y , k).

On the other hand, if ` = 1, we define

C ((X , k), (Y , `)) = ({a ∈ X | ak ∈ Y }, k).

Now R(v1, v2) ∧ S(v1, v2) can be expressed as (R ∩ S), and
R(v1, v2) ∧ S(v2) can be expressed as C (R,S).

Relevant operators

We will also need operators for boolean combinations. Given
AD-relations (X , k) and (Y , `), where k = `, we define

∩((X , k), (Y , `)) = (X ∩ Y , k).

On the other hand, if ` = 1, we define

C ((X , k), (Y , `)) = ({a ∈ X | ak ∈ Y }, k).

Now R(v1, v2) ∧ S(v1, v2) can be expressed as (R ∩ S), and
R(v1, v2) ∧ S(v2) can be expressed as C (R,S).

Relevant operators

We will also need operators for boolean combinations. Given
AD-relations (X , k) and (Y , `), where k = `, we define

∩((X , k), (Y , `)) = (X ∩ Y , k).

On the other hand, if ` = 1, we define

C ((X , k), (Y , `)) = ({a ∈ X | ak ∈ Y }, k).

Now R(v1, v2) ∧ S(v1, v2) can be expressed as (R ∩ S), and
R(v1, v2) ∧ S(v2) can be expressed as C (R,S).

Relevant operators

Finally we need operators for quantification.

Given an AD-relation
(X , k) over A, where k ≥ 1, we define

∃1((X , k)) = ({a ∈ A | There exists b ∈ Ak−1 so that ab ∈ X}, 1)

and we define ∃0((X , k)) to be ({∅}, 0) if and only if X is
non-empty.

Relevant operators

Finally we need operators for quantification. Given an AD-relation
(X , k) over A, where k ≥ 1, we define

∃1((X , k)) = ({a ∈ A | There exists b ∈ Ak−1 so that ab ∈ X}, 1)

and we define ∃0((X , k)) to be ({∅}, 0) if and only if X is
non-empty.

Algebraic characterization of FO2

Theorem

GRA(s, I ,¬,∩,C , ∃1,∃0) and FO2 are sententially equiexpressive
over vocabularies with at most binary relation symbols.

Using the fact that the satisfiability problem for two-variable fluted
logic is NexpTime-hard, we obtain the following complexity result.

Theorem

The satisfiability problem for GRA(s, I ,¬,∩,C ,∃1,∃0) is
NexpTime-hard.

Algebraic characterization of FO2

Theorem

GRA(s, I ,¬,∩,C , ∃1,∃0) and FO2 are sententially equiexpressive
over vocabularies with at most binary relation symbols.

Using the fact that the satisfiability problem for two-variable fluted
logic is NexpTime-hard, we obtain the following complexity result.

Theorem

The satisfiability problem for GRA(s, I ,¬,∩,C , ∃1,∃0) is
NexpTime-hard.

Extending FO2

There are at least three ways of extending the previous algebra in
such a way that we can still prove a corresponding upper bound.

The first option is to add a cyclic permutation operator. Given an
AD-relation (X , k) over A, where k ≥ 2, we define

p((X , k)) := ({(a2, ..., ak , a1) ∈ Ak | (a1, ..., ak) ∈ X}, k).

If k ≤ 1, then p((X , k)) = (X , k).

Using the cyclic permutation (together with s and I), we can
define arbitrary atomic formulas. The resulting logic is (roughly)
equivalent to the equality-free uniform one-dimensional logic,
which was introduced by Hella and Kuusisto.

Extending FO2

There are at least three ways of extending the previous algebra in
such a way that we can still prove a corresponding upper bound.

The first option is to add a cyclic permutation operator.

Given an
AD-relation (X , k) over A, where k ≥ 2, we define

p((X , k)) := ({(a2, ..., ak , a1) ∈ Ak | (a1, ..., ak) ∈ X}, k).

If k ≤ 1, then p((X , k)) = (X , k).

Using the cyclic permutation (together with s and I), we can
define arbitrary atomic formulas. The resulting logic is (roughly)
equivalent to the equality-free uniform one-dimensional logic,
which was introduced by Hella and Kuusisto.

Extending FO2

There are at least three ways of extending the previous algebra in
such a way that we can still prove a corresponding upper bound.

The first option is to add a cyclic permutation operator. Given an
AD-relation (X , k) over A, where k ≥ 2, we define

p((X , k)) := ({(a2, ..., ak , a1) ∈ Ak | (a1, ..., ak) ∈ X}, k).

If k ≤ 1, then p((X , k)) = (X , k).

Using the cyclic permutation (together with s and I), we can
define arbitrary atomic formulas. The resulting logic is (roughly)
equivalent to the equality-free uniform one-dimensional logic,
which was introduced by Hella and Kuusisto.

Extending FO2

There are at least three ways of extending the previous algebra in
such a way that we can still prove a corresponding upper bound.

The first option is to add a cyclic permutation operator. Given an
AD-relation (X , k) over A, where k ≥ 2, we define

p((X , k)) := ({(a2, ..., ak , a1) ∈ Ak | (a1, ..., ak) ∈ X}, k).

If k ≤ 1, then p((X , k)) = (X , k).

Using the cyclic permutation (together with s and I), we can
define arbitrary atomic formulas.

The resulting logic is (roughly)
equivalent to the equality-free uniform one-dimensional logic,
which was introduced by Hella and Kuusisto.

Extending FO2

There are at least three ways of extending the previous algebra in
such a way that we can still prove a corresponding upper bound.

The first option is to add a cyclic permutation operator. Given an
AD-relation (X , k) over A, where k ≥ 2, we define

p((X , k)) := ({(a2, ..., ak , a1) ∈ Ak | (a1, ..., ak) ∈ X}, k).

If k ≤ 1, then p((X , k)) = (X , k).

Using the cyclic permutation (together with s and I), we can
define arbitrary atomic formulas. The resulting logic is (roughly)
equivalent to the equality-free uniform one-dimensional logic,
which was introduced by Hella and Kuusisto.

Extending FO2

The second option is to replace the operators ∃1 and ∃0 with the
projection operator ∃.

Given an AD-relation (X , k) over A, where
k ≥ 1, we define

∃((X , k)) = ({a ∈ Ak−1 | ab ∈ X , for some b ∈ A}, k − 1).

If k = 0, then ∃((X , k)) = (X , k).

The resulting logic has access to arbitrary quantifier alternations.
Thus, it can for instance express statements such as
∀x∃y∀z∃w(R(x , y , z ,w) ∧ P(z) ∧ P(w)).

Extending FO2

The second option is to replace the operators ∃1 and ∃0 with the
projection operator ∃. Given an AD-relation (X , k) over A, where
k ≥ 1, we define

∃((X , k)) = ({a ∈ Ak−1 | ab ∈ X , for some b ∈ A}, k − 1).

If k = 0, then ∃((X , k)) = (X , k).

The resulting logic has access to arbitrary quantifier alternations.
Thus, it can for instance express statements such as
∀x∃y∀z∃w(R(x , y , z ,w) ∧ P(z) ∧ P(w)).

Extending FO2

The second option is to replace the operators ∃1 and ∃0 with the
projection operator ∃. Given an AD-relation (X , k) over A, where
k ≥ 1, we define

∃((X , k)) = ({a ∈ Ak−1 | ab ∈ X , for some b ∈ A}, k − 1).

If k = 0, then ∃((X , k)) = (X , k).

The resulting logic has access to arbitrary quantifier alternations.

Thus, it can for instance express statements such as
∀x∃y∀z∃w(R(x , y , z ,w) ∧ P(z) ∧ P(w)).

Extending FO2

The second option is to replace the operators ∃1 and ∃0 with the
projection operator ∃. Given an AD-relation (X , k) over A, where
k ≥ 1, we define

∃((X , k)) = ({a ∈ Ak−1 | ab ∈ X , for some b ∈ A}, k − 1).

If k = 0, then ∃((X , k)) = (X , k).

The resulting logic has access to arbitrary quantifier alternations.
Thus, it can for instance express statements such as
∀x∃y∀z∃w(R(x , y , z ,w) ∧ P(z) ∧ P(w)).

Extending FO2

The third option is to replace the operators ∩ and C with the
suffix-intersection operator ∩̇.

Given two AD-relations (X , k) and
(Y , `) over A, where k ≥ `, we define

∩̇((X , k), (Y , `)) = ({a ∈ X | (ak−`+1, ..., ak) ∈ Y }, k).

If k < `, then ∩̇((X , k), (Y , `)) = ∩̇((Y , `), (X , k)).

Using the suffix intersection operator, we can express statements
such as ∀x∃y∃z(S(x , y , z) ∧ R(y , z) ∧ P(z)).

The resulting logic can be seen as one-dimensional fragment of
fluted logic.

Extending FO2

The third option is to replace the operators ∩ and C with the
suffix-intersection operator ∩̇. Given two AD-relations (X , k) and
(Y , `) over A, where k ≥ `, we define

∩̇((X , k), (Y , `)) = ({a ∈ X | (ak−`+1, ..., ak) ∈ Y }, k).

If k < `, then ∩̇((X , k), (Y , `)) = ∩̇((Y , `), (X , k)).

Using the suffix intersection operator, we can express statements
such as ∀x∃y∃z(S(x , y , z) ∧ R(y , z) ∧ P(z)).

The resulting logic can be seen as one-dimensional fragment of
fluted logic.

Extending FO2

The third option is to replace the operators ∩ and C with the
suffix-intersection operator ∩̇. Given two AD-relations (X , k) and
(Y , `) over A, where k ≥ `, we define

∩̇((X , k), (Y , `)) = ({a ∈ X | (ak−`+1, ..., ak) ∈ Y }, k).

If k < `, then ∩̇((X , k), (Y , `)) = ∩̇((Y , `), (X , k)).

Using the suffix intersection operator, we can express statements
such as ∀x∃y∃z(S(x , y , z) ∧ R(y , z) ∧ P(z)).

The resulting logic can be seen as one-dimensional fragment of
fluted logic.

Extending FO2

The third option is to replace the operators ∩ and C with the
suffix-intersection operator ∩̇. Given two AD-relations (X , k) and
(Y , `) over A, where k ≥ `, we define

∩̇((X , k), (Y , `)) = ({a ∈ X | (ak−`+1, ..., ak) ∈ Y }, k).

If k < `, then ∩̇((X , k), (Y , `)) = ∩̇((Y , `), (X , k)).

Using the suffix intersection operator, we can express statements
such as ∀x∃y∃z(S(x , y , z) ∧ R(y , z) ∧ P(z)).

The resulting logic can be seen as one-dimensional fragment of
fluted logic.

Further extensions

Can we have add both p and ∩̇, while preserving decidability?

No.

Theorem

The satisfiability problem for GRA(p,¬, ∩̇,∃1,∃0) is Π0
1-complete.

How about p and ∃? No.

Theorem

The satisfiability problem for GRA(p,¬,∩,∃) is Π0
1-complete.

Further extensions

Can we have add both p and ∩̇, while preserving decidability? No.

Theorem

The satisfiability problem for GRA(p,¬, ∩̇,∃1, ∃0) is Π0
1-complete.

How about p and ∃? No.

Theorem

The satisfiability problem for GRA(p,¬,∩,∃) is Π0
1-complete.

Further extensions

Can we have add both p and ∩̇, while preserving decidability? No.

Theorem

The satisfiability problem for GRA(p,¬, ∩̇,∃1, ∃0) is Π0
1-complete.

How about p and ∃?

No.

Theorem

The satisfiability problem for GRA(p,¬,∩,∃) is Π0
1-complete.

Further extensions

Can we have add both p and ∩̇, while preserving decidability? No.

Theorem

The satisfiability problem for GRA(p,¬, ∩̇,∃1, ∃0) is Π0
1-complete.

How about p and ∃? No.

Theorem

The satisfiability problem for GRA(p,¬,∩,∃) is Π0
1-complete.

Further extensions

How about ∩̇ and ∃?

Yes, but it will cost.

Theorem (Pratt-Hartmann et al. 2019)

The satisfiability problem for GRA(¬, ∩̇,∃) is Tower-complete.

Here Tower is the class of problems solvable by a Turing machine
(deterministic or not) in time F3(p(n)), where p is an elementary
function and F3(x) is roughly speaking tower(x , x).

Further extensions

How about ∩̇ and ∃? Yes, but it will cost.

Theorem (Pratt-Hartmann et al. 2019)

The satisfiability problem for GRA(¬, ∩̇,∃) is Tower-complete.

Here Tower is the class of problems solvable by a Turing machine
(deterministic or not) in time F3(p(n)), where p is an elementary
function and F3(x) is roughly speaking tower(x , x).

Further extensions

How about ∩̇ and ∃? Yes, but it will cost.

Theorem (Pratt-Hartmann et al. 2019)

The satisfiability problem for GRA(¬, ∩̇,∃) is Tower-complete.

Here Tower is the class of problems solvable by a Turing machine
(deterministic or not) in time F3(p(n)), where p is an elementary
function and F3(x) is roughly speaking tower(x , x).

Constructing models of bounded size

For all of the extensions of FO2 mentioned here, one can prove
that they have the bounded model property: if T ∈ GRA(F) has
a model, then it has a model of size at most 2(|T |).

To demonstrate the ideas involved in these types of constructions,
we will sketch a proof of this property for
GRA(p, s, I ,¬,C ,∩,∃1,∃0).

Constructing models of bounded size

For all of the extensions of FO2 mentioned here, one can prove
that they have the bounded model property: if T ∈ GRA(F) has
a model, then it has a model of size at most 2(|T |).

To demonstrate the ideas involved in these types of constructions,
we will sketch a proof of this property for
GRA(p, s, I ,¬,C ,∩,∃1, ∃0).

Scott normal form

We say that T ∈ GRA(p, s, I ,¬,C ,∩,∃1, ∃0) is in scott normal
form, if it has the following form⋂

i∈I
∀0∃1T ∃i ∩

⋂
j∈J
∀0T ∀i ,

where T ∃i , T ∀j ∈ GRA(s, I ,¬,C ,∩).

Lemma

There exists a nondeterministic polynomial time procedure which
translates each GRA(p, s, I ,¬,C ,∩,∃1,∃0) term T to a
GRA(p, s, I ,¬,C ,∩,∃1,∃0) term T ′ in normal form that is
equisatisfiable with T in the following sense. If A |= T , then there
exists an extension of A′ so that A′ |= T ′, and vice versa, if
A |= T ′, then A |= T .

Scott normal form

We say that T ∈ GRA(p, s, I ,¬,C ,∩,∃1, ∃0) is in scott normal
form, if it has the following form⋂

i∈I
∀0∃1T ∃i ∩

⋂
j∈J
∀0T ∀i ,

where T ∃i , T ∀j ∈ GRA(s, I ,¬,C ,∩).

Lemma

There exists a nondeterministic polynomial time procedure which
translates each GRA(p, s, I ,¬,C ,∩,∃1,∃0) term T to a
GRA(p, s, I ,¬,C ,∩,∃1,∃0) term T ′ in normal form that is
equisatisfiable with T in the following sense. If A |= T , then there
exists an extension of A′ so that A′ |= T ′, and vice versa, if
A |= T ′, then A |= T .

Types and tables

Definition

A 1-type π over a vocabulary σ is a maximally consistent set of
unary terms of GRA(I ,¬)[σ].

Definition

A k-table over a vocabulary σ is a maximally consistent set of
k-ary terms of GRA(p, s, I)[σ] and their negations.

Types and tables

Definition

A 1-type π over a vocabulary σ is a maximally consistent set of
unary terms of GRA(I ,¬)[σ].

Definition

A k-table over a vocabulary σ is a maximally consistent set of
k-ary terms of GRA(p, s, I)[σ] and their negations.

Types and tables

If A is a model of vocabulary σ and (a1, ..., ak) ∈ Ak , then we use
tpA(a1, ..., ak) to denote the k-table that the tuple realizes.

Observation: if T ∈ GRA(p, s, I ,¬,∩,C)[σ] is a k-ary term and A
is a model of vocabulary σ, then whether or not a tuple (a1, ..., ak)
belongs to the interpretation of T depends only on tpA(a1, ..., ak)
and tpA(ai).

Types and tables

If A is a model of vocabulary σ and (a1, ..., ak) ∈ Ak , then we use
tpA(a1, ..., ak) to denote the k-table that the tuple realizes.

Observation: if T ∈ GRA(p, s, I ,¬,∩,C)[σ] is a k-ary term and A
is a model of vocabulary σ, then whether or not a tuple (a1, ..., ak)
belongs to the interpretation of T depends only on tpA(a1, ..., ak)
and tpA(ai).

Constructing the model

Suppose that T ∈ GRA(p, s, I ,¬,∩,C , ∃1,∃0) is a term in normal
form: ⋂

i∈I
∀0∃1T ∃i ∩

⋂
j∈J
∀0T ∀i

Let A be a model of T .

Now, for every 1-type π that is realized in
A, we choose some representative a ∈ A so that tpA(a) = π.
Then, for every i ∈ I and π we choose some set
Wπ,i = {c1, ..., ck} ⊆ A so that (a, c1, ..., ck) ∈ JT ∃i KA. As the
domain of the new model B, we will take the set

B =
⋃

Wπ,i ,j ,

where j ∈ {0, 1, 2} and all the sets Wπ,i ,j are pairwise disjoint.

Constructing the model

Suppose that T ∈ GRA(p, s, I ,¬,∩,C , ∃1,∃0) is a term in normal
form: ⋂

i∈I
∀0∃1T ∃i ∩

⋂
j∈J
∀0T ∀i

Let A be a model of T . Now, for every 1-type π that is realized in
A, we choose some representative a ∈ A so that tpA(a) = π.

Then, for every i ∈ I and π we choose some set
Wπ,i = {c1, ..., ck} ⊆ A so that (a, c1, ..., ck) ∈ JT ∃i KA. As the
domain of the new model B, we will take the set

B =
⋃

Wπ,i ,j ,

where j ∈ {0, 1, 2} and all the sets Wπ,i ,j are pairwise disjoint.

Constructing the model

Suppose that T ∈ GRA(p, s, I ,¬,∩,C , ∃1,∃0) is a term in normal
form: ⋂

i∈I
∀0∃1T ∃i ∩

⋂
j∈J
∀0T ∀i

Let A be a model of T . Now, for every 1-type π that is realized in
A, we choose some representative a ∈ A so that tpA(a) = π.
Then, for every i ∈ I and π we choose some set
Wπ,i = {c1, ..., ck} ⊆ A so that (a, c1, ..., ck) ∈ JT ∃i KA.

As the
domain of the new model B, we will take the set

B =
⋃

Wπ,i ,j ,

where j ∈ {0, 1, 2} and all the sets Wπ,i ,j are pairwise disjoint.

Constructing the model

Suppose that T ∈ GRA(p, s, I ,¬,∩,C , ∃1,∃0) is a term in normal
form: ⋂

i∈I
∀0∃1T ∃i ∩

⋂
j∈J
∀0T ∀i

Let A be a model of T . Now, for every 1-type π that is realized in
A, we choose some representative a ∈ A so that tpA(a) = π.
Then, for every i ∈ I and π we choose some set
Wπ,i = {c1, ..., ck} ⊆ A so that (a, c1, ..., ck) ∈ JT ∃i KA. As the
domain of the new model B, we will take the set

B =
⋃

Wπ,i ,j ,

where j ∈ {0, 1, 2} and all the sets Wπ,i ,j are pairwise disjoint.

Assigning witnesses

We start the model construction by making sure that all existential
requirements are satisfied.

So let i ∈ I and b ∈Wπ′,i ′,j . If a is the element associated to
π = tpB(b), then we know that the elements of Wπ,i = (c1, ..., ck)
form a witness for a. So, if Wπ,i ,j+1 mod 3 = (d1, ..., dk), where
tpB(di) = tpA(ci), for every 1 ≤ i ≤ k , then we define
tpB(b, d1, ..., dk) = tpA(a, c1, ..., ck).

Assigning witnesses

We start the model construction by making sure that all existential
requirements are satisfied.

So let i ∈ I and b ∈Wπ′,i ′,j .

If a is the element associated to
π = tpB(b), then we know that the elements of Wπ,i = (c1, ..., ck)
form a witness for a. So, if Wπ,i ,j+1 mod 3 = (d1, ..., dk), where
tpB(di) = tpA(ci), for every 1 ≤ i ≤ k , then we define
tpB(b, d1, ..., dk) = tpA(a, c1, ..., ck).

Assigning witnesses

We start the model construction by making sure that all existential
requirements are satisfied.

So let i ∈ I and b ∈Wπ′,i ′,j . If a is the element associated to
π = tpB(b), then we know that the elements of Wπ,i = (c1, ..., ck)
form a witness for a.

So, if Wπ,i ,j+1 mod 3 = (d1, ..., dk), where
tpB(di) = tpA(ci), for every 1 ≤ i ≤ k , then we define
tpB(b, d1, ..., dk) = tpA(a, c1, ..., ck).

Assigning witnesses

We start the model construction by making sure that all existential
requirements are satisfied.

So let i ∈ I and b ∈Wπ′,i ′,j . If a is the element associated to
π = tpB(b), then we know that the elements of Wπ,i = (c1, ..., ck)
form a witness for a. So, if Wπ,i ,j+1 mod 3 = (d1, ..., dk), where
tpB(di) = tpA(ci), for every 1 ≤ i ≤ k , then we define
tpB(b, d1, ..., dk) = tpA(a, c1, ..., ck).

Completing the model

Since the term T makes also global requirements, we have to
specify the k-tables for each k-tuple.

Let b ∈ Bk . By construction, there exists some a ∈ Ak so that
tpB(bi) = tpA(ai), for every 1 ≤ i ≤ k . We then define
tpB(b) = tpA(a).

This completes the construction and the resulting model B will be
a model of T .

Completing the model

Since the term T makes also global requirements, we have to
specify the k-tables for each k-tuple.

Let b ∈ Bk . By construction, there exists some a ∈ Ak so that
tpB(bi) = tpA(ai), for every 1 ≤ i ≤ k .

We then define
tpB(b) = tpA(a).

This completes the construction and the resulting model B will be
a model of T .

Completing the model

Since the term T makes also global requirements, we have to
specify the k-tables for each k-tuple.

Let b ∈ Bk . By construction, there exists some a ∈ Ak so that
tpB(bi) = tpA(ai), for every 1 ≤ i ≤ k . We then define
tpB(b) = tpA(a).

This completes the construction and the resulting model B will be
a model of T .

Completing the model

Since the term T makes also global requirements, we have to
specify the k-tables for each k-tuple.

Let b ∈ Bk . By construction, there exists some a ∈ Ak so that
tpB(bi) = tpA(ai), for every 1 ≤ i ≤ k . We then define
tpB(b) = tpA(a).

This completes the construction and the resulting model B will be
a model of T .

Imposing syntactical restrictions to guarded fragments

Guarded fragment GF can be given a nice algebraic
characterization with the difference operator.

Given AD-relations
(X , k) and (Y , k), we define

\((X , k), (Y , k)) = (X\Y , k).

Theorem

GRA(p, s, I , \, ∩̇,∃) is sententially equivalent with equality-free
GF and its satisfiability problem is 2ExpTime-complete.

Imposing syntactical restrictions to guarded fragments

Guarded fragment GF can be given a nice algebraic
characterization with the difference operator. Given AD-relations
(X , k) and (Y , k), we define

\((X , k), (Y , k)) = (X\Y , k).

Theorem

GRA(p, s, I , \, ∩̇,∃) is sententially equivalent with equality-free
GF and its satisfiability problem is 2ExpTime-complete.

Imposing syntactical restrictions to guarded fragments

Guarded fragment GF can be given a nice algebraic
characterization with the difference operator. Given AD-relations
(X , k) and (Y , k), we define

\((X , k), (Y , k)) = (X\Y , k).

Theorem

GRA(p, s, I , \, ∩̇,∃) is sententially equivalent with equality-free
GF and its satisfiability problem is 2ExpTime-complete.

Imposing syntactical restrictions to guarded fragments

Dropping p or replacing ∃ with ∃1 and ∃0 will lead to an easier
satisfiability problem.

Theorem

The satisfiability problem for GRA(s, I , \, ∩̇,∃) is
ExpTime-complete.

Theorem (Kieronski, 2019)

The satisfiability problem for GRA(p, s, I , \, ∩̇,∃1, ∃0) is
NexpTime-complete.

Imposing syntactical restrictions to guarded fragments

Dropping p or replacing ∃ with ∃1 and ∃0 will lead to an easier
satisfiability problem.

Theorem

The satisfiability problem for GRA(s, I , \, ∩̇,∃) is
ExpTime-complete.

Theorem (Kieronski, 2019)

The satisfiability problem for GRA(p, s, I , \, ∩̇, ∃1, ∃0) is
NexpTime-complete.

Summary

Imposing a combination of one-dimensionality, uniformity and
restricted permutations of variables leads to decidable extensions of
FO2.

Furthermore, more liberal restrictions seem to easily lead to
undecidability.

The algebras GRA(p, s, I ,¬,∩,C ,∃1, ∃0) and
GRA(s, I ,¬, ∩̇,∃1,∃0) remain decidable even in the presence of
equality. Does the same hold for GRA(s, I ,¬,∩,C , ∃)?

Summary

Imposing a combination of one-dimensionality, uniformity and
restricted permutations of variables leads to decidable extensions of
FO2. Furthermore, more liberal restrictions seem to easily lead to
undecidability.

The algebras GRA(p, s, I ,¬,∩,C ,∃1, ∃0) and
GRA(s, I ,¬, ∩̇,∃1,∃0) remain decidable even in the presence of
equality. Does the same hold for GRA(s, I ,¬,∩,C , ∃)?

Summary

Imposing a combination of one-dimensionality, uniformity and
restricted permutations of variables leads to decidable extensions of
FO2. Furthermore, more liberal restrictions seem to easily lead to
undecidability.

The algebras GRA(p, s, I ,¬,∩,C ,∃1, ∃0) and
GRA(s, I ,¬, ∩̇, ∃1,∃0) remain decidable even in the presence of
equality. Does the same hold for GRA(s, I ,¬,∩,C , ∃)?

