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Background

Theorem (Mortimer 75, Grädel et al. 97)

FO2 has the finite model property and its satisfiability problem is
NexpTime-complete.

Dana Scott proved already in 1962 that equality-free FO2 is
decidable by reducing its satisfiability problem to the
Gödel-Kalmár-Schütte class without equality [∃∗∀2∃∗, all ].
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Gödel-Kalmár-Schütte class without equality [∃∗∀2∃∗, all ].



Question

FO2 does not cope well with relations of arity higher than two. For
instance, it can’t even express the property that a ternary relation
is non-empty.

How can we extend the expressive power of FO2 while preserving
decidability?
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If k ∈ Z+, then a k-ary AD-relation over a set A is a pair (X , k),
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A k-ary relational operator F is a mapping which associates to
every set A a function FA
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Algebraic way of defining logics

Definition

Let F be a set of operators and let σ be a relational vocabulary.
The set of terms GRA(F)[σ] is defined by the following grammar.

T ::= R | F (T , ..., T ),

where R ∈ σ and F ∈ F .

Definition

Given a model A of vocabulary σ and term T ∈ GRA(F)[σ], its
interpretation JT KA is defined recursively as follows.

1 JRKA := RA

2 JF (T1, ..., Tn)KA := FA(JT1KA, ..., JTnKA)



Algebraic way of defining logics

Definition

Let F be a set of operators and let σ be a relational vocabulary.
The set of terms GRA(F)[σ] is defined by the following grammar.

T ::= R | F (T , ..., T ),

where R ∈ σ and F ∈ F .

Definition

Given a model A of vocabulary σ and term T ∈ GRA(F)[σ], its
interpretation JT KA is defined recursively as follows.

1 JRKA := RA

2 JF (T1, ..., Tn)KA := FA(JT1KA, ..., JTnKA)



Connection with standard syntax

To compare the expressive power of terms and formulas, we note
that each first-order formula ϕ(vi1 , ..., vik ), where i1 ≤ ... ≤ ik ,
defines over each model A an AD-relation

JϕKA = ({(a1, ..., ak) ∈ Ak | A |= ϕ(a1, ..., ak)}, k).

For example the formula R(v1, v2) defines the AD-relation (RA, 2)
and R(v2, v1) defines the AD-relation ((RA)−1, 2).
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Relevant operators

We start by introducing a sufficient set of relational operators for
characterization (roughly) the equality-free FO2.

First we need some operators for expressing atomic formulas.
Given an AD-relation (X , k) over A, where k ≥ 2, we define
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Now R(v2, v1) can be expressed as sR and R(v1, v1) as IR.
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Relevant operators

We will also need operators for boolean combinations.

Given
AD-relations (X , k) and (Y , `), where k = `, we define

∩((X , k), (Y , `)) = (X ∩ Y , k).

On the other hand, if ` = 1, we define

C ((X , k), (Y , `)) = ({a ∈ X | ak ∈ Y }, k).

Now R(v1, v2) ∧ S(v1, v2) can be expressed as (R ∩ S), and
R(v1, v2) ∧ S(v2) can be expressed as C (R,S).
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(X , k) over A, where k ≥ 1, we define

∃1((X , k)) = ({a ∈ A | There exists b ∈ Ak−1 so that ab ∈ X}, 1)

and we define ∃0((X , k)) to be ({∅}, 0) if and only if X is
non-empty.
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Theorem

GRA(s, I ,¬,∩,C , ∃1,∃0) and FO2 are sententially equiexpressive
over vocabularies with at most binary relation symbols.

Using the fact that the satisfiability problem for two-variable fluted
logic is NexpTime-hard, we obtain the following complexity result.
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The satisfiability problem for GRA(s, I ,¬,∩,C ,∃1,∃0) is
NexpTime-hard.
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Extending FO2

There are at least three ways of extending the previous algebra in
such a way that we can still prove a corresponding upper bound.

The first option is to add a cyclic permutation operator. Given an
AD-relation (X , k) over A, where k ≥ 2, we define

p((X , k)) := ({(a2, ..., ak , a1) ∈ Ak | (a1, ..., ak) ∈ X}, k).

If k ≤ 1, then p((X , k)) = (X , k).

Using the cyclic permutation (together with s and I ), we can
define arbitrary atomic formulas. The resulting logic is (roughly)
equivalent to the equality-free uniform one-dimensional logic,
which was introduced by Hella and Kuusisto.



Extending FO2

There are at least three ways of extending the previous algebra in
such a way that we can still prove a corresponding upper bound.

The first option is to add a cyclic permutation operator.

Given an
AD-relation (X , k) over A, where k ≥ 2, we define

p((X , k)) := ({(a2, ..., ak , a1) ∈ Ak | (a1, ..., ak) ∈ X}, k).

If k ≤ 1, then p((X , k)) = (X , k).

Using the cyclic permutation (together with s and I ), we can
define arbitrary atomic formulas. The resulting logic is (roughly)
equivalent to the equality-free uniform one-dimensional logic,
which was introduced by Hella and Kuusisto.



Extending FO2

There are at least three ways of extending the previous algebra in
such a way that we can still prove a corresponding upper bound.

The first option is to add a cyclic permutation operator. Given an
AD-relation (X , k) over A, where k ≥ 2, we define

p((X , k)) := ({(a2, ..., ak , a1) ∈ Ak | (a1, ..., ak) ∈ X}, k).

If k ≤ 1, then p((X , k)) = (X , k).

Using the cyclic permutation (together with s and I ), we can
define arbitrary atomic formulas. The resulting logic is (roughly)
equivalent to the equality-free uniform one-dimensional logic,
which was introduced by Hella and Kuusisto.



Extending FO2

There are at least three ways of extending the previous algebra in
such a way that we can still prove a corresponding upper bound.

The first option is to add a cyclic permutation operator. Given an
AD-relation (X , k) over A, where k ≥ 2, we define

p((X , k)) := ({(a2, ..., ak , a1) ∈ Ak | (a1, ..., ak) ∈ X}, k).

If k ≤ 1, then p((X , k)) = (X , k).

Using the cyclic permutation (together with s and I ), we can
define arbitrary atomic formulas.

The resulting logic is (roughly)
equivalent to the equality-free uniform one-dimensional logic,
which was introduced by Hella and Kuusisto.



Extending FO2

There are at least three ways of extending the previous algebra in
such a way that we can still prove a corresponding upper bound.

The first option is to add a cyclic permutation operator. Given an
AD-relation (X , k) over A, where k ≥ 2, we define

p((X , k)) := ({(a2, ..., ak , a1) ∈ Ak | (a1, ..., ak) ∈ X}, k).

If k ≤ 1, then p((X , k)) = (X , k).

Using the cyclic permutation (together with s and I ), we can
define arbitrary atomic formulas. The resulting logic is (roughly)
equivalent to the equality-free uniform one-dimensional logic,
which was introduced by Hella and Kuusisto.



Extending FO2

The second option is to replace the operators ∃1 and ∃0 with the
projection operator ∃.

Given an AD-relation (X , k) over A, where
k ≥ 1, we define

∃((X , k)) = ({a ∈ Ak−1 | ab ∈ X , for some b ∈ A}, k − 1).

If k = 0, then ∃((X , k)) = (X , k).

The resulting logic has access to arbitrary quantifier alternations.
Thus, it can for instance express statements such as
∀x∃y∀z∃w(R(x , y , z ,w) ∧ P(z) ∧ P(w)).
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Constructing models of bounded size

For all of the extensions of FO2 mentioned here, one can prove
that they have the bounded model property: if T ∈ GRA(F) has
a model, then it has a model of size at most 2(|T |).

To demonstrate the ideas involved in these types of constructions,
we will sketch a proof of this property for
GRA(p, s, I ,¬,C ,∩,∃1,∃0).
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Scott normal form

We say that T ∈ GRA(p, s, I ,¬,C ,∩,∃1, ∃0) is in scott normal
form, if it has the following form⋂

i∈I
∀0∃1T ∃i ∩

⋂
j∈J
∀0T ∀i ,

where T ∃i , T ∀j ∈ GRA(s, I ,¬,C ,∩).

Lemma

There exists a nondeterministic polynomial time procedure which
translates each GRA(p, s, I ,¬,C ,∩,∃1,∃0) term T to a
GRA(p, s, I ,¬,C ,∩,∃1,∃0) term T ′ in normal form that is
equisatisfiable with T in the following sense. If A |= T , then there
exists an extension of A′ so that A′ |= T ′, and vice versa, if
A |= T ′, then A |= T .
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If A is a model of vocabulary σ and (a1, ..., ak) ∈ Ak , then we use
tpA(a1, ..., ak) to denote the k-table that the tuple realizes.

Observation: if T ∈ GRA(p, s, I ,¬,∩,C )[σ] is a k-ary term and A
is a model of vocabulary σ, then whether or not a tuple (a1, ..., ak)
belongs to the interpretation of T depends only on tpA(a1, ..., ak)
and tpA(ai ).
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Suppose that T ∈ GRA(p, s, I ,¬,∩,C , ∃1,∃0) is a term in normal
form: ⋂

i∈I
∀0∃1T ∃i ∩

⋂
j∈J
∀0T ∀i

Let A be a model of T .

Now, for every 1-type π that is realized in
A, we choose some representative a ∈ A so that tpA(a) = π.
Then, for every i ∈ I and π we choose some set
Wπ,i = {c1, ..., ck} ⊆ A so that (a, c1, ..., ck) ∈ JT ∃i KA. As the
domain of the new model B, we will take the set

B =
⋃

Wπ,i ,j ,

where j ∈ {0, 1, 2} and all the sets Wπ,i ,j are pairwise disjoint.
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Assigning witnesses

We start the model construction by making sure that all existential
requirements are satisfied.

So let i ∈ I and b ∈Wπ′,i ′,j . If a is the element associated to
π = tpB(b), then we know that the elements of Wπ,i = (c1, ..., ck)
form a witness for a. So, if Wπ,i ,j+1 mod 3 = (d1, ..., dk), where
tpB(di ) = tpA(ci ), for every 1 ≤ i ≤ k , then we define
tpB(b, d1, ..., dk) = tpA(a, c1, ..., ck).
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Completing the model

Since the term T makes also global requirements, we have to
specify the k-tables for each k-tuple.

Let b ∈ Bk . By construction, there exists some a ∈ Ak so that
tpB(bi ) = tpA(ai ), for every 1 ≤ i ≤ k . We then define
tpB(b) = tpA(a).

This completes the construction and the resulting model B will be
a model of T .
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Imposing syntactical restrictions to guarded fragments

Guarded fragment GF can be given a nice algebraic
characterization with the difference operator.

Given AD-relations
(X , k) and (Y , k), we define

\((X , k), (Y , k)) = (X\Y , k).

Theorem

GRA(p, s, I , \, ∩̇,∃) is sententially equivalent with equality-free
GF and its satisfiability problem is 2ExpTime-complete.
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Imposing a combination of one-dimensionality, uniformity and
restricted permutations of variables leads to decidable extensions of
FO2.

Furthermore, more liberal restrictions seem to easily lead to
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The algebras GRA(p, s, I ,¬,∩,C ,∃1, ∃0) and
GRA(s, I ,¬, ∩̇,∃1,∃0) remain decidable even in the presence of
equality. Does the same hold for GRA(s, I ,¬,∩,C , ∃)?
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