## Extensions of two-variable logic

Reijo Jaakkola

Tampere University

December 11, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## Theorem (Mortimer 75, Grädel et al. 97)

 ${\rm FO}^2$  has the finite model property and its satisfiability problem is  ${\rm NEXPTIME}\text{-}complete.$ 

## Theorem (Mortimer 75, Grädel et al. 97)

 ${
m FO}^2$  has the finite model property and its satisfiability problem is NEXPTIME-complete.

Dana Scott proved already in 1962 that equality-free FO<sup>2</sup> is decidable by reducing its satisfiability problem to the Gödel-Kalmár-Schütte class without equality  $[\exists^*\forall^2\exists^*, all]$ .

 ${\rm FO}^2$  does not cope well with relations of arity higher than two. For instance, it can't even express the property that a ternary relation is non-empty.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 ${
m FO}^2$  does not cope well with relations of arity higher than two. For instance, it can't even express the property that a ternary relation is non-empty.

How can we extend the expressive power of  $\mathrm{FO}^2$  while preserving decidability?

In this talk the problem of finding tame extensions of  $FO^2$  will be approached using an algebraic framework.



In this talk the problem of finding tame extensions of  $FO^2$  will be approached using an algebraic framework. We will focus on extensions of *equality-free*  $FO^2$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

If  $k \in \mathbb{Z}_+$ , then a k-ary AD-relation over a set A is a pair (X, k), where  $X \subseteq A^k$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

If  $k \in \mathbb{Z}_+$ , then a k-ary AD-relation over a set A is a pair (X, k), where  $X \subseteq A^k$ .

If A is a set, then AD(A) denotes the set of AD-relations over A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If  $k \in \mathbb{Z}_+$ , then a k-ary AD-relation over a set A is a pair (X, k), where  $X \subseteq A^k$ .

If A is a set, then AD(A) denotes the set of AD-relations over A.

### Definition

A *k*-ary relational operator F is a mapping which associates to every set A a function  $F_A$ 

$$F_A : \mathrm{AD}(A)^k \to \mathrm{AD}(A)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Algebraic way of defining logics

### Definition

Let  $\mathcal{F}$  be a set of operators and let  $\sigma$  be a relational vocabulary. The set of terms  $GRA(\mathcal{F})[\sigma]$  is defined by the following grammar.

$$\mathcal{T} ::= R \mid F(\mathcal{T}, ..., \mathcal{T}),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

where  $R \in \sigma$  and  $F \in \mathcal{F}$ .

Let  $\mathcal{F}$  be a set of operators and let  $\sigma$  be a relational vocabulary. The set of terms  $GRA(\mathcal{F})[\sigma]$  is defined by the following grammar.

$$\mathcal{T} ::= R \mid F(\mathcal{T}, ..., \mathcal{T}),$$

where  $R \in \sigma$  and  $F \in \mathcal{F}$ .

### Definition

Given a model  $\mathfrak{A}$  of vocabulary  $\sigma$  and term  $\mathcal{T} \in \operatorname{GRA}(\mathcal{F})[\sigma]$ , its interpretation  $[\![\mathcal{T}]\!]_{\mathfrak{A}}$  is defined recursively as follows.

$$\ \ \llbracket R \rrbracket_{\mathfrak{A}} := R^{\mathfrak{A}}$$

To compare the expressive power of terms and formulas, we note that each first-order formula  $\varphi(v_{i_1}, ..., v_{i_k})$ , where  $i_1 \leq ... \leq i_k$ , defines over each model  $\mathfrak{A}$  an AD-relation

$$\llbracket \varphi \rrbracket_{\mathfrak{A}} = (\{(a_1,...,a_k) \in A^k \mid \mathfrak{A} \models \varphi(a_1,...,a_k)\}, k).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

To compare the expressive power of terms and formulas, we note that each first-order formula  $\varphi(v_{i_1}, ..., v_{i_k})$ , where  $i_1 \leq ... \leq i_k$ , defines over each model  $\mathfrak{A}$  an AD-relation

$$\llbracket \varphi \rrbracket_{\mathfrak{A}} = (\{(a_1,...,a_k) \in A^k \mid \mathfrak{A} \models \varphi(a_1,...,a_k)\}, k).$$

For example the formula  $R(v_1, v_2)$  defines the AD-relation  $(R^{\mathfrak{A}}, 2)$ and  $R(v_2, v_1)$  defines the AD-relation  $((R^{\mathfrak{A}})^{-1}, 2)$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

First we need some operators for expressing atomic formulas.

First we need some operators for expressing atomic formulas. Given an AD-relation (X, k) over A, where  $k \ge 2$ , we define

$$s((X,k)) = (\{(a_1, ..., a_k, a_{k-1}) \in A^k \mid (a_1, ..., a_{k-1}, a_k) \in X\}, k)$$
$$I((X,k)) = (\{(a_1, ..., a_{k-1}) \in A^k \mid (a_1, ..., a_{k-1}, a_{k-1}) \in X\}, k-1)$$

First we need some operators for expressing atomic formulas. Given an AD-relation (X, k) over A, where  $k \ge 2$ , we define

$$s((X,k)) = (\{(a_1,...,a_k,a_{k-1}) \in A^k \mid (a_1,...,a_{k-1},a_k) \in X\},k)$$

$$I((X,k)) = (\{(a_1,...,a_{k-1}) \in A^k \mid (a_1,...,a_{k-1},a_{k-1}) \in X\}, k-1)$$

Now  $R(v_2, v_1)$  can be expressed as sR and  $R(v_1, v_1)$  as IR.

We will also need operators for boolean combinations.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We will also need operators for boolean combinations. Given AD-relations (X, k) and  $(Y, \ell)$ , where  $k = \ell$ , we define

 $\cap ((X,k),(Y,\ell)) = (X \cap Y,k).$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We will also need operators for boolean combinations. Given AD-relations (X, k) and  $(Y, \ell)$ , where  $k = \ell$ , we define

 $\cap ((X,k),(Y,\ell)) = (X \cap Y,k).$ 

On the other hand, if  $\ell = 1$ , we define

$$C((X,k),(Y,\ell)) = (\{\overline{a} \in X \mid a_k \in Y\}, k).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We will also need operators for boolean combinations. Given AD-relations (X, k) and  $(Y, \ell)$ , where  $k = \ell$ , we define

 $\cap ((X,k),(Y,\ell)) = (X \cap Y,k).$ 

On the other hand, if  $\ell = 1$ , we define

$$C((X,k),(Y,\ell)) = (\{\overline{a} \in X \mid a_k \in Y\}, k).$$

Now  $R(v_1, v_2) \wedge S(v_1, v_2)$  can be expressed as  $(R \cap S)$ , and  $R(v_1, v_2) \wedge S(v_2)$  can be expressed as C(R, S).

Finally we need operators for quantification.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Finally we need operators for quantification. Given an AD-relation (X, k) over A, where  $k \ge 1$ , we define

 $\exists_1((X,k)) = (\{a \in A \mid \text{There exists } \overline{b} \in A^{k-1} \text{ so that } a\overline{b} \in X\}, 1)$ 

and we define  $\exists_0((X, k))$  to be  $(\{\emptyset\}, 0)$  if and only if X is non-empty.

### Theorem

 $\operatorname{GRA}(s, I, \neg, \cap, C, \exists_1, \exists_0)$  and  $\operatorname{FO}^2$  are sententially equiexpressive over vocabularies with at most binary relation symbols.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

### Theorem

 $\operatorname{GRA}(s, I, \neg, \cap, C, \exists_1, \exists_0)$  and  $\operatorname{FO}^2$  are sententially equiexpressive over vocabularies with at most binary relation symbols.

Using the fact that the satisfiability problem for two-variable fluted logic is  $\rm NEXPTIME\text{-}hard,$  we obtain the following complexity result.

#### Theorem

The satisfiability problem for  $GRA(s, I, \neg, \cap, C, \exists_1, \exists_0)$  is NEXPTIME-hard.

・ロト・国ト・モート ヨー うらぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The first option is to add a cyclic permutation operator.

The first option is to add a cyclic permutation operator. Given an AD-relation (X, k) over A, where  $k \ge 2$ , we define

$$p((X, k)) := (\{(a_2, ..., a_k, a_1) \in A^k \mid (a_1, ..., a_k) \in X\}, k).$$
  
If  $k \le 1$ , then  $p((X, k)) = (X, k).$ 

The first option is to add a cyclic permutation operator. Given an AD-relation (X, k) over A, where  $k \ge 2$ , we define

$$p((X, k)) := (\{(a_2, ..., a_k, a_1) \in A^k \mid (a_1, ..., a_k) \in X\}, k).$$

If  $k \leq 1$ , then p((X, k)) = (X, k).

Using the cyclic permutation (together with s and l), we can define arbitrary atomic formulas.

The first option is to add a cyclic permutation operator. Given an AD-relation (X, k) over A, where  $k \ge 2$ , we define

$$p((X,k)) := (\{(a_2,...,a_k,a_1) \in A^k \mid (a_1,...,a_k) \in X\},k).$$

If  $k \leq 1$ , then p((X, k)) = (X, k).

Using the cyclic permutation (together with s and l), we can define arbitrary atomic formulas. The resulting logic is (roughly) equivalent to the equality-free uniform one-dimensional logic, which was introduced by Hella and Kuusisto.



The second option is to replace the operators  $\exists_1$  and  $\exists_0$  with the projection operator  $\exists$ .

The second option is to replace the operators  $\exists_1 \text{ and } \exists_0 \text{ with the projection operator } \exists$ . Given an AD-relation (X, k) over A, where  $k \ge 1$ , we define

$$\exists ((X,k)) = (\{\overline{a} \in A^{k-1} \mid \overline{a}b \in X, \text{ for some } b \in A\}, k-1).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If k = 0, then  $\exists ((X, k)) = (X, k)$ .

The second option is to replace the operators  $\exists_1 \text{ and } \exists_0 \text{ with the projection operator } \exists$ . Given an AD-relation (X, k) over A, where  $k \ge 1$ , we define

$$\exists ((X,k)) = (\{\overline{a} \in A^{k-1} \mid \overline{a}b \in X, \text{ for some } b \in A\}, k-1).$$

If 
$$k = 0$$
, then  $\exists ((X, k)) = (X, k)$ .

The resulting logic has access to arbitrary quantifier alternations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The second option is to replace the operators  $\exists_1 \text{ and } \exists_0$  with the projection operator  $\exists$ . Given an AD-relation (X, k) over A, where  $k \ge 1$ , we define

$$\exists ((X,k)) = (\{\overline{a} \in A^{k-1} \mid \overline{a}b \in X, \text{ for some } b \in A\}, k-1).$$

If k = 0, then  $\exists ((X, k)) = (X, k)$ .

The resulting logic has access to arbitrary quantifier alternations. Thus, it can for instance express statements such as  $\forall x \exists y \forall z \exists w (R(x, y, z, w) \land P(z) \land P(w)).$ 



The third option is to replace the operators  $\cap$  and C with the suffix-intersection operator  $\dot{\cap}.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
The third option is to replace the operators  $\cap$  and C with the suffix-intersection operator  $\dot{\cap}$ . Given two AD-relations (X, k) and  $(Y, \ell)$  over A, where  $k \ge \ell$ , we define

$$\dot{\cap}((X,k),(Y,\ell)) = (\{\overline{a} \in X \mid (a_{k-\ell+1},...,a_k) \in Y\},k).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If  $k < \ell$ , then  $\dot{\cap}((X, k), (Y, \ell)) = \dot{\cap}((Y, \ell), (X, k))$ .

The third option is to replace the operators  $\cap$  and C with the suffix-intersection operator  $\dot{\cap}$ . Given two AD-relations (X, k) and  $(Y, \ell)$  over A, where  $k \ge \ell$ , we define

$$\dot{\cap}((X,k),(Y,\ell))=(\{\overline{a}\in X\mid (a_{k-\ell+1},...,a_k)\in Y\},k).$$

If  $k < \ell$ , then  $\dot{\cap}((X,k),(Y,\ell)) = \dot{\cap}((Y,\ell),(X,k))$ .

Using the suffix intersection operator, we can express statements such as  $\forall x \exists y \exists z (S(x, y, z) \land R(y, z) \land P(z)).$ 

The third option is to replace the operators  $\cap$  and C with the suffix-intersection operator  $\dot{\cap}$ . Given two AD-relations (X, k) and  $(Y, \ell)$  over A, where  $k \ge \ell$ , we define

$$\dot{\cap}((X,k),(Y,\ell))=(\{\overline{a}\in X\mid (a_{k-\ell+1},...,a_k)\in Y\},k).$$

If  $k < \ell$ , then  $\dot{\cap}((X,k),(Y,\ell)) = \dot{\cap}((Y,\ell),(X,k))$ .

Using the suffix intersection operator, we can express statements such as  $\forall x \exists y \exists z (S(x, y, z) \land R(y, z) \land P(z)).$ 

The resulting logic can be seen as one-dimensional fragment of fluted logic.

# Can we have add both p and $\dot{\cap}$ , while preserving decidability?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## Can we have add both p and $\dot{\cap}$ , while preserving decidability? No.

### Theorem

The satisfiability problem for  $GRA(p, \neg, \dot{\cap}, \exists_1, \exists_0)$  is  $\Pi_1^0$ -complete.

## Can we have add both p and $\dot{\cap}$ , while preserving decidability? No.

#### Theorem

The satisfiability problem for  $GRA(p, \neg, \dot{\cap}, \exists_1, \exists_0)$  is  $\Pi_1^0$ -complete.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How about p and  $\exists$ ?

## Can we have add both p and $\dot{\cap}$ , while preserving decidability? No.

#### Theorem

The satisfiability problem for  $GRA(p, \neg, \dot{\cap}, \exists_1, \exists_0)$  is  $\Pi_1^0$ -complete.

How about p and  $\exists$ ? No.

### Theorem

The satisfiability problem for  $GRA(p, \neg, \cap, \exists)$  is  $\Pi_1^0$ -complete.

How about  $\dot{\cap}$  and  $\exists$ ?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

How about  $\dot{\cap}$  and  $\exists ?$  Yes, but it will cost.

Theorem (Pratt-Hartmann et al. 2019)

The satisfiability problem for  $GRA(\neg, \dot{\cap}, \exists)$  is Tower-complete.

How about  $\dot{\cap}$  and  $\exists$ ? Yes, but it will cost.

Theorem (Pratt-Hartmann et al. 2019)

The satisfiability problem for  $GRA(\neg, \dot{\cap}, \exists)$  is Tower-complete.

Here Tower is the class of problems solvable by a Turing machine (deterministic or not) in time  $F_3(p(n))$ , where p is an elementary function and  $F_3(x)$  is roughly speaking *tower*(x, x).

For all of the extensions of  $FO^2$  mentioned here, one can prove that they have the bounded model property: if  $\mathcal{T} \in GRA(\mathcal{F})$  has a model, then it has a model of size at most  $2^{(|\mathcal{T}|)}$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

For all of the extensions of  $FO^2$  mentioned here, one can prove that they have the bounded model property: if  $\mathcal{T} \in GRA(\mathcal{F})$  has a model, then it has a model of size at most  $2^{(|\mathcal{T}|)}$ .

To demonstrate the ideas involved in these types of constructions, we will sketch a proof of this property for  $GRA(p, s, I, \neg, C, \cap, \exists_1, \exists_0)$ .

# Scott normal form

We say that  $\mathcal{T} \in \text{GRA}(p, s, I, \neg, C, \cap, \exists_1, \exists_0)$  is in scott normal form, if it has the following form

$$\bigcap_{i\in I} \forall_0 \exists_1 \mathcal{T}_i^{\exists} \cap \bigcap_{j\in J} \forall_0 \mathcal{T}_i^{\forall},$$

where  $\mathcal{T}_i^\exists, \mathcal{T}_j^\forall \in \text{GRA}(s, I, \neg, C, \cap).$ 

# Scott normal form

We say that  $\mathcal{T} \in \text{GRA}(p, s, I, \neg, C, \cap, \exists_1, \exists_0)$  is in scott normal form, if it has the following form

$$\bigcap_{i\in I} \forall_0 \exists_1 \mathcal{T}_i^{\exists} \cap \bigcap_{j\in J} \forall_0 \mathcal{T}_i^{\forall},$$

where 
$$\mathcal{T}_i^\exists, \mathcal{T}_j^\forall \in \text{GRA}(s, I, \neg, C, \cap).$$

#### Lemma

There exists a nondeterministic polynomial time procedure which translates each GRA( $p, s, I, \neg, C, \cap, \exists_1, \exists_0$ ) term  $\mathcal{T}$  to a GRA( $p, s, I, \neg, C, \cap, \exists_1, \exists_0$ ) term  $\mathcal{T}'$  in normal form that is equisatisfiable with  $\mathcal{T}$  in the following sense. If  $\mathfrak{A} \models \mathcal{T}$ , then there exists an extension of  $\mathfrak{A}'$  so that  $\mathfrak{A}' \models \mathcal{T}'$ , and vice versa, if  $\mathfrak{A} \models \mathcal{T}'$ , then  $\mathfrak{A} \models \mathcal{T}$ .

## Definition

A 1-type  $\pi$  over a vocabulary  $\sigma$  is a maximally consistent set of unary terms of  $\text{GRA}(I, \neg)[\sigma]$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Definition

A 1-type  $\pi$  over a vocabulary  $\sigma$  is a maximally consistent set of unary terms of  $\text{GRA}(I, \neg)[\sigma]$ .

## Definition

A *k*-table over a vocabulary  $\sigma$  is a maximally consistent set of *k*-ary terms of GRA(p, s, l)[ $\sigma$ ] and their negations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# If $\mathfrak{A}$ is a model of vocabulary $\sigma$ and $(a_1, ..., a_k) \in A^k$ , then we use $tp_{\mathfrak{A}}(a_1, ..., a_k)$ to denote the k-table that the tuple realizes.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

If  $\mathfrak{A}$  is a model of vocabulary  $\sigma$  and  $(a_1, ..., a_k) \in A^k$ , then we use  $tp_{\mathfrak{A}}(a_1, ..., a_k)$  to denote the k-table that the tuple realizes.

Observation: if  $\mathcal{T} \in \text{GRA}(p, s, I, \neg, \cap, C)[\sigma]$  is a *k*-ary term and  $\mathfrak{A}$  is a model of vocabulary  $\sigma$ , then whether or not a tuple  $(a_1, ..., a_k)$  belongs to the interpretation of  $\mathcal{T}$  depends only on  $tp_{\mathfrak{A}}(a_1, ..., a_k)$  and  $tp_{\mathfrak{A}}(a_i)$ .

$$\bigcap_{i\in I} \forall_0 \exists_1 \mathcal{T}_i^{\exists} \cap \bigcap_{j\in J} \forall_0 \mathcal{T}_i^{\forall}$$

Let  $\mathfrak{A}$  be a model of  $\mathcal{T}$ .



$$\bigcap_{i\in I} \forall_0 \exists_1 \mathcal{T}_i^{\exists} \cap \bigcap_{j\in J} \forall_0 \mathcal{T}_i^{\forall}$$

Let  $\mathfrak{A}$  be a model of  $\mathcal{T}$ . Now, for every 1-type  $\pi$  that is realized in  $\mathfrak{A}$ , we choose some representative  $a \in A$  so that  $tp_{\mathfrak{A}}(a) = \pi$ .

$$\bigcap_{i\in I} \forall_0 \exists_1 \mathcal{T}_i^{\exists} \cap \bigcap_{j\in J} \forall_0 \mathcal{T}_i^{\forall}$$

Let  $\mathfrak{A}$  be a model of  $\mathcal{T}$ . Now, for every 1-type  $\pi$  that is realized in  $\mathfrak{A}$ , we choose some representative  $a \in A$  so that  $tp_{\mathfrak{A}}(a) = \pi$ . Then, for every  $i \in I$  and  $\pi$  we choose some set  $W_{\pi,i} = \{c_1, ..., c_k\} \subseteq A$  so that  $(a, c_1, ..., c_k) \in [\![\mathcal{T}_i^\exists]\!]_{\mathfrak{A}}$ .

$$\bigcap_{i\in I} \forall_0 \exists_1 \mathcal{T}_i^{\exists} \cap \bigcap_{j\in J} \forall_0 \mathcal{T}_i^{\forall}$$

Let  $\mathfrak{A}$  be a model of  $\mathcal{T}$ . Now, for every 1-type  $\pi$  that is realized in  $\mathfrak{A}$ , we choose some representative  $a \in A$  so that  $tp_{\mathfrak{A}}(a) = \pi$ . Then, for every  $i \in I$  and  $\pi$  we choose some set  $W_{\pi,i} = \{c_1, ..., c_k\} \subseteq A$  so that  $(a, c_1, ..., c_k) \in [\![\mathcal{T}_i^\exists]\!]_{\mathfrak{A}}$ . As the domain of the new model  $\mathfrak{B}$ , we will take the set

$$B=\bigcup W_{\pi,i,j},$$

where  $j \in \{0, 1, 2\}$  and all the sets  $W_{\pi,i,j}$  are pairwise disjoint.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

So let  $i \in I$  and  $b \in W_{\pi',i',j}$ .



So let  $i \in I$  and  $b \in W_{\pi',i',j}$ . If *a* is the element associated to  $\pi = tp_{\mathfrak{B}}(b)$ , then we know that the elements of  $W_{\pi,i} = (c_1, ..., c_k)$  form a witness for *a*.

So let  $i \in I$  and  $b \in W_{\pi',i',j}$ . If *a* is the element associated to  $\pi = tp_{\mathfrak{B}}(b)$ , then we know that the elements of  $W_{\pi,i} = (c_1, ..., c_k)$  form a witness for *a*. So, if  $W_{\pi,i,j+1 \mod 3} = (d_1, ..., d_k)$ , where  $tp_{\mathfrak{B}}(d_i) = tp_{\mathfrak{A}}(c_i)$ , for every  $1 \leq i \leq k$ , then we define  $tp_{\mathfrak{B}}(b, d_1, ..., d_k) = tp_{\mathfrak{A}}(a, c_1, ..., c_k)$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let  $\overline{b} \in B^k$ . By construction, there exists some  $\overline{a} \in A^k$  so that  $tp_{\mathfrak{B}}(b_i) = tp_{\mathfrak{A}}(a_i)$ , for every  $1 \le i \le k$ .

Let  $\overline{b} \in B^k$ . By construction, there exists some  $\overline{a} \in A^k$  so that  $tp_{\mathfrak{B}}(b_i) = tp_{\mathfrak{A}}(a_i)$ , for every  $1 \leq i \leq k$ . We then define  $tp_{\mathfrak{B}}(\overline{b}) = tp_{\mathfrak{A}}(\overline{a})$ .

Let  $\overline{b} \in B^k$ . By construction, there exists some  $\overline{a} \in A^k$  so that  $tp_{\mathfrak{B}}(b_i) = tp_{\mathfrak{A}}(a_i)$ , for every  $1 \leq i \leq k$ . We then define  $tp_{\mathfrak{B}}(\overline{b}) = tp_{\mathfrak{A}}(\overline{a})$ .

This completes the construction and the resulting model  ${\mathfrak B}$  will be a model of  ${\mathcal T}.$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Guarded fragment  ${\rm GF}$  can be given a nice algebraic characterization with the difference operator.

Guarded fragment GF can be given a nice algebraic characterization with the difference operator. Given AD-relations (X, k) and (Y, k), we define

$$\setminus ((X,k),(Y,k)) = (X \setminus Y,k).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Guarded fragment GF can be given a nice algebraic characterization with the difference operator. Given AD-relations (X, k) and (Y, k), we define

$$\setminus ((X,k),(Y,k)) = (X \setminus Y,k).$$

#### Theorem

 $GRA(p, s, I, \backslash, \dot{\cap}, \exists)$  is sententially equivalent with equality-free GF and its satisfiability problem is 2ExpTIME-complete.

Dropping *p* or replacing  $\exists$  with  $\exists_1$  and  $\exists_0$  will lead to an easier satisfiability problem.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Dropping p or replacing  $\exists$  with  $\exists_1$  and  $\exists_0$  will lead to an easier satisfiability problem.

#### Theorem

The satisfiability problem for  $GRA(s, I, \backslash, \dot{\cap}, \exists)$  is EXPTIME-complete.

## Theorem (Kieronski, 2019)

The satisfiability problem for  $GRA(p, s, I, \backslash, \dot{\cap}, \exists_1, \exists_0)$  is NEXPTIME-complete.

・ロト・日本・日本・日本・日本・日本

Imposing a combination of one-dimensionality, uniformity and restricted permutations of variables leads to decidable extensions of  ${\rm FO}^2.$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
Imposing a combination of one-dimensionality, uniformity and restricted permutations of variables leads to decidable extensions of  $\rm FO^2$ . Furthermore, more liberal restrictions seem to easily lead to undecidability.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Imposing a combination of one-dimensionality, uniformity and restricted permutations of variables leads to decidable extensions of  $\rm FO^2$ . Furthermore, more liberal restrictions seem to easily lead to undecidability.

The algebras  $GRA(p, s, I, \neg, \cap, C, \exists_1, \exists_0)$  and  $GRA(s, I, \neg, \dot{\cap}, \exists_1, \exists_0)$  remain decidable even in the presence of equality. Does the same hold for  $GRA(s, I, \neg, \cap, C, \exists)$ ?