
Algebraic classifications for
fragments of first-order logic

and beyond

Reijo Jaakkola

Tampere University
Joint work with Antti Kuusisto

Funding: Theory of computational logics – Academy of Finland
grant 438874

Background

Study of decidability of fragments of first-order logic.

Full first-order logic is well-known to be undecidable and the goal
is to isolate computationally well-behaved fragments.

Current research also goes beyond first-order logic, e.g. logics with
fixed-point operators.

Background

Study of decidability of fragments of first-order logic.

Full first-order logic is well-known to be undecidable and the goal
is to isolate computationally well-behaved fragments.

Current research also goes beyond first-order logic, e.g. logics with
fixed-point operators.

Background

Study of decidability of fragments of first-order logic.

Full first-order logic is well-known to be undecidable and the goal
is to isolate computationally well-behaved fragments.

Current research also goes beyond first-order logic, e.g. logics with
fixed-point operators.

Background

Large number of different decidable fragments of first-order logic,
but no general theory.

Need for a more systematic approach to studying the decidable
fragments of first-order logic.

Background

Large number of different decidable fragments of first-order logic,
but no general theory.

Need for a more systematic approach to studying the decidable
fragments of first-order logic.

Background

Large number of different decidable fragments of first-order logic,
but no general theory.

Need for a more systematic approach to studying the decidable
fragments of first-order logic.

Our approach

Our approach is to give an algebraic characterization of first-order
logic based on a finite algebraic signature.

This opens the door for
a systematic classification for fragments of first-order logic.

Our approach

Our approach is to give an algebraic characterization of first-order
logic based on a finite algebraic signature. This opens the door for
a systematic classification for fragments of first-order logic.

General relational algebra

We consider the algebraic signature (u, p, s,¬, I , J,∃).

Given a (relational) vocabulary τ , we define the set of τ -terms
GRA as

T ::= u | R | pT | sT | ¬T | IT | J(T , T) | ∃T

where R ∈ τ .

General relational algebra

We consider the algebraic signature (u, p, s,¬, I , J,∃).

Given a (relational) vocabulary τ , we define the set of τ -terms
GRA as

T ::= u | R | pT | sT | ¬T | IT | J(T , T) | ∃T

where R ∈ τ .

Arity definite relations

An AD-relation over a set A is a pair (R, k), where R ⊆ Ak .

Why AD-relations? Consider the AD-relations (A, 1) and (A2, 2)
over A. If we now take their complements, we obtain the AD-
relations (∅, 1) and (∅, 2), so we don’t lose information.

AD-relations also allow us to apply projection on an empty relation,
since the projection of (∅, 2) is just (∅, 1).

Arity definite relations

An AD-relation over a set A is a pair (R, k), where R ⊆ Ak .

Why AD-relations?

Consider the AD-relations (A, 1) and (A2, 2)
over A. If we now take their complements, we obtain the AD-
relations (∅, 1) and (∅, 2), so we don’t lose information.

AD-relations also allow us to apply projection on an empty relation,
since the projection of (∅, 2) is just (∅, 1).

Arity definite relations

An AD-relation over a set A is a pair (R, k), where R ⊆ Ak .

Why AD-relations? Consider the AD-relations (A, 1) and (A2, 2)
over A.

If we now take their complements, we obtain the AD-
relations (∅, 1) and (∅, 2), so we don’t lose information.

AD-relations also allow us to apply projection on an empty relation,
since the projection of (∅, 2) is just (∅, 1).

Arity definite relations

An AD-relation over a set A is a pair (R, k), where R ⊆ Ak .

Why AD-relations? Consider the AD-relations (A, 1) and (A2, 2)
over A. If we now take their complements, we obtain the AD-
relations (∅, 1) and (∅, 2), so we don’t lose information.

AD-relations also allow us to apply projection on an empty relation,
since the projection of (∅, 2) is just (∅, 1).

Arity definite relations

An AD-relation over a set A is a pair (R, k), where R ⊆ Ak .

Why AD-relations? Consider the AD-relations (A, 1) and (A2, 2)
over A. If we now take their complements, we obtain the AD-
relations (∅, 1) and (∅, 2), so we don’t lose information.

AD-relations also allow us to apply projection on an empty relation

,
since the projection of (∅, 2) is just (∅, 1).

Arity definite relations

An AD-relation over a set A is a pair (R, k), where R ⊆ Ak .

Why AD-relations? Consider the AD-relations (A, 1) and (A2, 2)
over A. If we now take their complements, we obtain the AD-
relations (∅, 1) and (∅, 2), so we don’t lose information.

AD-relations also allow us to apply projection on an empty relation,
since the projection of (∅, 2) is just (∅, 1).

AD-relations defined by FO formulas

Consider a first-order formula ϕ(vi1 , ..., vik), where the free
variables of ϕ are exactly vi1 , ..., vik and i1 < ... < ik .

The formula ϕ(vi1 , ..., vik) defines an AD-relation on every model A

({(a1, ..., ak) ∈ Ak | A |= ϕ(a1, ..., ak)}, k)

For example ϕ(x1, x2) and ϕ(x7, x9) define the same AD-relations.
Also note that R(v1, v3, v3) defines a binary AD-relation.

AD-relations defined by FO formulas

Consider a first-order formula ϕ(vi1 , ..., vik), where the free
variables of ϕ are exactly vi1 , ..., vik and i1 < ... < ik .

The formula ϕ(vi1 , ..., vik) defines an AD-relation on every model A

({(a1, ..., ak) ∈ Ak | A |= ϕ(a1, ..., ak)}, k)

For example ϕ(x1, x2) and ϕ(x7, x9) define the same AD-relations.
Also note that R(v1, v3, v3) defines a binary AD-relation.

AD-relations defined by FO formulas

Consider a first-order formula ϕ(vi1 , ..., vik), where the free
variables of ϕ are exactly vi1 , ..., vik and i1 < ... < ik .

The formula ϕ(vi1 , ..., vik) defines an AD-relation on every model A

({(a1, ..., ak) ∈ Ak | A |= ϕ(a1, ..., ak)}, k)

For example ϕ(x1, x2) and ϕ(x7, x9) define the same AD-relations.

Also note that R(v1, v3, v3) defines a binary AD-relation.

AD-relations defined by FO formulas

Consider a first-order formula ϕ(vi1 , ..., vik), where the free
variables of ϕ are exactly vi1 , ..., vik and i1 < ... < ik .

The formula ϕ(vi1 , ..., vik) defines an AD-relation on every model A

({(a1, ..., ak) ∈ Ak | A |= ϕ(a1, ..., ak)}, k)

For example ϕ(x1, x2) and ϕ(x7, x9) define the same AD-relations.
Also note that R(v1, v3, v3) defines a binary AD-relation.

Semantics of GRA

Let A be a τ -model. Every term T in GRA defines an AD-relation
T A over A as follows.

R) Here R is a k-ary relation symbol in τ , so R is a constant
term in the algebra. We define
RA =

(
{(a1, . . . , ak) |A |= R(a1, . . . , ak) }, k

)
.

u) We define uA = (A, 1). The constant u can be called the
universe constant or the universal unary relation constant.

Semantics of GRA

Let A be a τ -model. Every term T in GRA defines an AD-relation
T A over A as follows.

R) Here R is a k-ary relation symbol in τ , so R is a constant
term in the algebra. We define
RA =

(
{(a1, . . . , ak) |A |= R(a1, . . . , ak) }, k

)
.

u) We define uA = (A, 1). The constant u can be called the
universe constant or the universal unary relation constant.

Semantics of GRA

Let A be a τ -model. Every term T in GRA defines an AD-relation
T A over A as follows.

R) Here R is a k-ary relation symbol in τ , so R is a constant
term in the algebra. We define
RA =

(
{(a1, . . . , ak) |A |= R(a1, . . . , ak) }, k

)
.

u) We define uA = (A, 1). The constant u can be called the
universe constant or the universal unary relation constant.

Semantics of GRA

p) If ar(T) = k ≥ 2, we define

(p(T))A =
(
{(a2, . . . , ak , a1) | (a1, . . . , ak) ∈ T A }, k

)
.

We call p the permutation operator, or cyclic permutation
operator.

s) If ar(T) = k ≥ 2, we define(
s(T))A =

(
{(a2, a1, a3, . . . , ak) | (a1, . . . , ak) ∈ T A }, k

)
.

We refer to s as the swap operator.

Semantics of GRA

p) If ar(T) = k ≥ 2, we define

(p(T))A =
(
{(a2, . . . , ak , a1) | (a1, . . . , ak) ∈ T A }, k

)
.

We call p the permutation operator, or cyclic permutation
operator.

s) If ar(T) = k ≥ 2, we define(
s(T))A =

(
{(a2, a1, a3, . . . , ak) | (a1, . . . , ak) ∈ T A }, k

)
.

We refer to s as the swap operator.

Semantics of GRA

I) If ar(T) = k ≥ 2, we let

(I (T))A =
(
{(a1, . . . , ak) | (a1, . . . , ak) ∈ T A and a1 = a2}, k

)
.

We refer to I as the identity operator, or equality operator.

∃) If ar(T) = k ≥ 1, we let

(∃(T))A =(
{(a2, ... , ak) | (a1, ... , ak) ∈ T A for some a1 ∈ A }, k − 1

)
.

We call ∃ the existence operator, or projection operator.

Semantics of GRA

I) If ar(T) = k ≥ 2, we let

(I (T))A =
(
{(a1, . . . , ak) | (a1, . . . , ak) ∈ T A and a1 = a2}, k

)
.

We refer to I as the identity operator, or equality operator.

∃) If ar(T) = k ≥ 1, we let

(∃(T))A =(
{(a2, ... , ak) | (a1, ... , ak) ∈ T A for some a1 ∈ A }, k − 1

)
.

We call ∃ the existence operator, or projection operator.

Semantics of GRA

J) Let ar(T) = k and ar(S) = `. We define

(J(T ,S))A = (T A × SA, k + `).

We refer to J as the join operator.

¬) Let ar(T) = k . We define

(¬(T))A =
(
Ak\TA, k

)
.

We refer to ¬ as the negation or complementation operator.

Semantics of GRA

J) Let ar(T) = k and ar(S) = `. We define

(J(T ,S))A = (T A × SA, k + `).

We refer to J as the join operator.

¬) Let ar(T) = k . We define

(¬(T))A =
(
Ak\TA, k

)
.

We refer to ¬ as the negation or complementation operator.

GRA captures FO

Theorem
FO and GRA are equiexpressive.

Direction from GRA to FO is straightforward.We will focus on
pointing out the main ideas for the other direction.

GRA captures FO

Theorem
FO and GRA are equiexpressive.

Direction from GRA to FO is straightforward.

We will focus on
pointing out the main ideas for the other direction.

GRA captures FO

Theorem
FO and GRA are equiexpressive.

Direction from GRA to FO is straightforward.We will focus on
pointing out the main ideas for the other direction.

FO is contained in GRA

Identities x = x and x = y can be translated to u and IJ(u, u)
respectively.

The case of formulas R(vi1 , ..., vik) is more involved. First note that
if no variable occurs twice in the tuple (vi1 , ..., vik) and i1 < ... < ik ,
then we can translate R(vi1 , ..., vik) simply to R.

In the other case start with R and then use p, s, I and ∃ to express
what elements are the same, after which we use to p and s to order
the remaining elements in the desired order.

FO is contained in GRA

Identities x = x and x = y can be translated to u and IJ(u, u)
respectively.

The case of formulas R(vi1 , ..., vik) is more involved. First note that
if no variable occurs twice in the tuple (vi1 , ..., vik) and i1 < ... < ik ,
then we can translate R(vi1 , ..., vik) simply to R.

In the other case start with R and then use p, s, I and ∃ to express
what elements are the same, after which we use to p and s to order
the remaining elements in the desired order.

FO is contained in GRA

Identities x = x and x = y can be translated to u and IJ(u, u)
respectively.

The case of formulas R(vi1 , ..., vik) is more involved. First note that
if no variable occurs twice in the tuple (vi1 , ..., vik) and i1 < ... < ik ,
then we can translate R(vi1 , ..., vik) simply to R.

In the other case start with R and then use p, s, I and ∃ to express
what elements are the same, after which we use to p and s to order
the remaining elements in the desired order.

FO is contained in GRA

As an example consider the formula R(v2, v1, v2).

1. We start with the term R, which is equivalent to R(v1, v2, v3).

2. We first express that in every tuple the first and the third
element are the same. This can be done with the term IppR,
which is equivalent to v1 = v2 ∧ R(v2, v3, v1).

3. Next we reduce the arity of the term by using projection ∃.
This results in the term ∃IppR, which is equivalent to
R(v1, v2, v1).

4. We use s to swap the places of v1 and v2. The resulting term
s∃IppR is then equivalent to R(v2, v1, v2).

FO is contained in GRA

As an example consider the formula R(v2, v1, v2).

1. We start with the term R, which is equivalent to R(v1, v2, v3).

2. We first express that in every tuple the first and the third
element are the same. This can be done with the term IppR,
which is equivalent to v1 = v2 ∧ R(v2, v3, v1).

3. Next we reduce the arity of the term by using projection ∃.
This results in the term ∃IppR, which is equivalent to
R(v1, v2, v1).

4. We use s to swap the places of v1 and v2. The resulting term
s∃IppR is then equivalent to R(v2, v1, v2).

FO is contained in GRA

As an example consider the formula R(v2, v1, v2).

1. We start with the term R, which is equivalent to R(v1, v2, v3).

2. We first express that in every tuple the first and the third
element are the same.

This can be done with the term IppR,
which is equivalent to v1 = v2 ∧ R(v2, v3, v1).

3. Next we reduce the arity of the term by using projection ∃.
This results in the term ∃IppR, which is equivalent to
R(v1, v2, v1).

4. We use s to swap the places of v1 and v2. The resulting term
s∃IppR is then equivalent to R(v2, v1, v2).

FO is contained in GRA

As an example consider the formula R(v2, v1, v2).

1. We start with the term R, which is equivalent to R(v1, v2, v3).

2. We first express that in every tuple the first and the third
element are the same. This can be done with the term IppR,
which is equivalent to v1 = v2 ∧ R(v2, v3, v1).

3. Next we reduce the arity of the term by using projection ∃.
This results in the term ∃IppR, which is equivalent to
R(v1, v2, v1).

4. We use s to swap the places of v1 and v2. The resulting term
s∃IppR is then equivalent to R(v2, v1, v2).

FO is contained in GRA

As an example consider the formula R(v2, v1, v2).

1. We start with the term R, which is equivalent to R(v1, v2, v3).

2. We first express that in every tuple the first and the third
element are the same. This can be done with the term IppR,
which is equivalent to v1 = v2 ∧ R(v2, v3, v1).

3. Next we reduce the arity of the term by using projection ∃.

This results in the term ∃IppR, which is equivalent to
R(v1, v2, v1).

4. We use s to swap the places of v1 and v2. The resulting term
s∃IppR is then equivalent to R(v2, v1, v2).

FO is contained in GRA

As an example consider the formula R(v2, v1, v2).

1. We start with the term R, which is equivalent to R(v1, v2, v3).

2. We first express that in every tuple the first and the third
element are the same. This can be done with the term IppR,
which is equivalent to v1 = v2 ∧ R(v2, v3, v1).

3. Next we reduce the arity of the term by using projection ∃.
This results in the term ∃IppR, which is equivalent to
R(v1, v2, v1).

4. We use s to swap the places of v1 and v2. The resulting term
s∃IppR is then equivalent to R(v2, v1, v2).

FO is contained in GRA

As an example consider the formula R(v2, v1, v2).

1. We start with the term R, which is equivalent to R(v1, v2, v3).

2. We first express that in every tuple the first and the third
element are the same. This can be done with the term IppR,
which is equivalent to v1 = v2 ∧ R(v2, v3, v1).

3. Next we reduce the arity of the term by using projection ∃.
This results in the term ∃IppR, which is equivalent to
R(v1, v2, v1).

4. We use s to swap the places of v1 and v2.

The resulting term
s∃IppR is then equivalent to R(v2, v1, v2).

FO is contained in GRA

As an example consider the formula R(v2, v1, v2).

1. We start with the term R, which is equivalent to R(v1, v2, v3).

2. We first express that in every tuple the first and the third
element are the same. This can be done with the term IppR,
which is equivalent to v1 = v2 ∧ R(v2, v3, v1).

3. Next we reduce the arity of the term by using projection ∃.
This results in the term ∃IppR, which is equivalent to
R(v1, v2, v1).

4. We use s to swap the places of v1 and v2. The resulting term
s∃IppR is then equivalent to R(v2, v1, v2).

FO is contained in GRA

How to translate (ϕ ∧ ψ)?

Let T be equivalent to ϕ and S be
equivalent to ψ. We start by considering the term J(T ,S).

Similar to the case of atomic formulas, if the formulas ϕ and ψ
share free variables, then we must express this using p, s, I and ∃.

Also we might have to use p and s to reorder elements in the
tuples. For example we could have a case like ϕ(v1, v3) ∧ ψ(v2).

FO is contained in GRA

How to translate (ϕ ∧ ψ)? Let T be equivalent to ϕ and S be
equivalent to ψ.

We start by considering the term J(T ,S).

Similar to the case of atomic formulas, if the formulas ϕ and ψ
share free variables, then we must express this using p, s, I and ∃.

Also we might have to use p and s to reorder elements in the
tuples. For example we could have a case like ϕ(v1, v3) ∧ ψ(v2).

FO is contained in GRA

How to translate (ϕ ∧ ψ)? Let T be equivalent to ϕ and S be
equivalent to ψ. We start by considering the term J(T ,S).

Similar to the case of atomic formulas, if the formulas ϕ and ψ
share free variables, then we must express this using p, s, I and ∃.

Also we might have to use p and s to reorder elements in the
tuples. For example we could have a case like ϕ(v1, v3) ∧ ψ(v2).

FO is contained in GRA

How to translate (ϕ ∧ ψ)? Let T be equivalent to ϕ and S be
equivalent to ψ. We start by considering the term J(T ,S).

Similar to the case of atomic formulas, if the formulas ϕ and ψ
share free variables, then we must express this using p, s, I and ∃.

Also we might have to use p and s to reorder elements in the
tuples. For example we could have a case like ϕ(v1, v3) ∧ ψ(v2).

FO is contained in GRA

How to translate (ϕ ∧ ψ)? Let T be equivalent to ϕ and S be
equivalent to ψ. We start by considering the term J(T ,S).

Similar to the case of atomic formulas, if the formulas ϕ and ψ
share free variables, then we must express this using p, s, I and ∃.

Also we might have to use p and s to reorder elements in the
tuples.

For example we could have a case like ϕ(v1, v3) ∧ ψ(v2).

FO is contained in GRA

How to translate (ϕ ∧ ψ)? Let T be equivalent to ϕ and S be
equivalent to ψ. We start by considering the term J(T ,S).

Similar to the case of atomic formulas, if the formulas ϕ and ψ
share free variables, then we must express this using p, s, I and ∃.

Also we might have to use p and s to reorder elements in the
tuples. For example we could have a case like ϕ(v1, v3) ∧ ψ(v2).

FO is contained in GRA

Negation is easy, but what about ∃viϕ?

Use p together with ∃ to project away the correct element. For
example ∃v2R(v1, v2, v3) is equivalent to p∃pR.

FO is contained in GRA

Negation is easy, but what about ∃viϕ?

Use p together with ∃ to project away the correct element.

For
example ∃v2R(v1, v2, v3) is equivalent to p∃pR.

FO is contained in GRA

Negation is easy, but what about ∃viϕ?

Use p together with ∃ to project away the correct element. For
example ∃v2R(v1, v2, v3) is equivalent to p∃pR.

Fragments of GRA

What happens to the complexity of satisfiability problem if we
remove some of the relation operators from GRA?

1. Every term in GRA\¬ is satisfiable.

2. The set of satisfiable terms of GRA\J is a regular language.

3. GRA\∃ and GRA\I are both NP-complete.

4. GRA(p, I ,¬, J,∃) is Π0
1-complete and thus removing u or s

does not lead to a decidable logic.

Complexity of GRA\p remains as an open problem, but we
conjecture that it is decidable.

Fragments of GRA

What happens to the complexity of satisfiability problem if we
remove some of the relation operators from GRA?

1. Every term in GRA\¬ is satisfiable.

2. The set of satisfiable terms of GRA\J is a regular language.

3. GRA\∃ and GRA\I are both NP-complete.

4. GRA(p, I ,¬, J,∃) is Π0
1-complete and thus removing u or s

does not lead to a decidable logic.

Complexity of GRA\p remains as an open problem, but we
conjecture that it is decidable.

Fragments of GRA

What happens to the complexity of satisfiability problem if we
remove some of the relation operators from GRA?

1. Every term in GRA\¬ is satisfiable.

2. The set of satisfiable terms of GRA\J is a regular language.

3. GRA\∃ and GRA\I are both NP-complete.

4. GRA(p, I ,¬, J,∃) is Π0
1-complete and thus removing u or s

does not lead to a decidable logic.

Complexity of GRA\p remains as an open problem, but we
conjecture that it is decidable.

Fragments of GRA

What happens to the complexity of satisfiability problem if we
remove some of the relation operators from GRA?

1. Every term in GRA\¬ is satisfiable.

2. The set of satisfiable terms of GRA\J is a regular language.

3. GRA\∃ and GRA\I are both NP-complete.

4. GRA(p, I ,¬, J,∃) is Π0
1-complete and thus removing u or s

does not lead to a decidable logic.

Complexity of GRA\p remains as an open problem, but we
conjecture that it is decidable.

Fragments of GRA

What happens to the complexity of satisfiability problem if we
remove some of the relation operators from GRA?

1. Every term in GRA\¬ is satisfiable.

2. The set of satisfiable terms of GRA\J is a regular language.

3. GRA\∃ and GRA\I are both NP-complete.

4. GRA(p, I ,¬, J, ∃) is Π0
1-complete and thus removing u or s

does not lead to a decidable logic.

Complexity of GRA\p remains as an open problem, but we
conjecture that it is decidable.

Fragments of GRA

What happens to the complexity of satisfiability problem if we
remove some of the relation operators from GRA?

1. Every term in GRA\¬ is satisfiable.

2. The set of satisfiable terms of GRA\J is a regular language.

3. GRA\∃ and GRA\I are both NP-complete.

4. GRA(p, I ,¬, J, ∃) is Π0
1-complete and thus removing u or s

does not lead to a decidable logic.

Complexity of GRA\p remains as an open problem, but we
conjecture that it is decidable.

Going beyond GRA

The system GRA is only of the many interesting systems that are
equivalent to first-order logic.

One can also study weaker, stronger as well as orthogonal systems.
For this purpose we provide a definition for a general relation
operator.

Going beyond GRA

The system GRA is only of the many interesting systems that are
equivalent to first-order logic.

One can also study weaker, stronger as well as orthogonal systems.

For this purpose we provide a definition for a general relation
operator.

Going beyond GRA

The system GRA is only of the many interesting systems that are
equivalent to first-order logic.

One can also study weaker, stronger as well as orthogonal systems.
For this purpose we provide a definition for a general relation
operator.

Generalized relation operator

Let ADA denote the set of all AD-relations over A. An
AD-structure is a tuple (A,T1, ...,Tk), where T1, ...,Tk ∈ ADA.

A bijection g : A→ B is an isomorphism between AD-structures
(A,T1, ...,Tk) and (B,S1, ...,Sk), if ar(Ti) = ar(Si), for every i ,
and g is an ordinary isomorphism between (A, rel(T1), ..., rel(Tk))
and (B, rel(S1), ..., rel(Sk)).

Generalized relation operator

Let ADA denote the set of all AD-relations over A. An
AD-structure is a tuple (A,T1, ...,Tk), where T1, ...,Tk ∈ ADA.

A bijection g : A→ B is an isomorphism between AD-structures
(A,T1, ...,Tk) and (B, S1, ...,Sk), if ar(Ti) = ar(Si), for every i ,
and g is an ordinary isomorphism between (A, rel(T1), ..., rel(Tk))
and (B, rel(S1), ..., rel(Sk)).

Generalized relation operator

A k-ary relation operator f is a map that outputs for any given set
A, a k-ary function f A : (ADA)k → ADA.

We also require that f A is isomorphism invariant: if (A,T1, ...,Tk)
and (B,S1, ...,Sk) are isomorphic via g , then also
(A, f A(T1, ...,Tk)) and (B, f A(S1, ...,Sk)) are, likewise, isomorphic
via g .

Generalized quantifiers can be seen as a relation operators that
always output either ({∅}, 0) = >0 or (∅, 0) = ⊥0.

Generalized relation operator

A k-ary relation operator f is a map that outputs for any given set
A, a k-ary function f A : (ADA)k → ADA.

We also require that f A is isomorphism invariant: if (A,T1, ...,Tk)
and (B,S1, ...,Sk) are isomorphic via g , then also
(A, f A(T1, ...,Tk)) and (B, f A(S1, ...,Sk)) are, likewise, isomorphic
via g .

Generalized quantifiers can be seen as a relation operators that
always output either ({∅}, 0) = >0 or (∅, 0) = ⊥0.

Generalized relation operator

A k-ary relation operator f is a map that outputs for any given set
A, a k-ary function f A : (ADA)k → ADA.

We also require that f A is isomorphism invariant: if (A,T1, ...,Tk)
and (B,S1, ...,Sk) are isomorphic via g , then also
(A, f A(T1, ...,Tk)) and (B, f A(S1, ...,Sk)) are, likewise, isomorphic
via g .

Generalized quantifiers can be seen as a relation operators that
always output either ({∅}, 0) = >0 or (∅, 0) = ⊥0.

Algebraic characterizations for FO2,GF and FL

Providing algebraic characterizations for decidable fragments can
be also used to compare different decidable fragments.

Using the suffix intersection operator ∩̇, we were able to give very
similar algebraic characterizations for the two-variable logic FO2,
guarded fragment GF and fluted logic FL.

The suffix intersection is a generalization of intersection which can
operate on relations of different arity. For example R(x , y) ∧ P(y)
is equivalent to R∩̇P.

Algebraic characterizations for FO2,GF and FL

Providing algebraic characterizations for decidable fragments can
be also used to compare different decidable fragments.

Using the suffix intersection operator ∩̇, we were able to give very
similar algebraic characterizations for the two-variable logic FO2,
guarded fragment GF and fluted logic FL.

The suffix intersection is a generalization of intersection which can
operate on relations of different arity. For example R(x , y) ∧ P(y)
is equivalent to R∩̇P.

Algebraic characterizations for FO2,GF and FL

Providing algebraic characterizations for decidable fragments can
be also used to compare different decidable fragments.

Using the suffix intersection operator ∩̇, we were able to give very
similar algebraic characterizations for the two-variable logic FO2,
guarded fragment GF and fluted logic FL.

The suffix intersection is a generalization of intersection which can
operate on relations of different arity.

For example R(x , y) ∧ P(y)
is equivalent to R∩̇P.

Algebraic characterizations for FO2,GF and FL

Providing algebraic characterizations for decidable fragments can
be also used to compare different decidable fragments.

Using the suffix intersection operator ∩̇, we were able to give very
similar algebraic characterizations for the two-variable logic FO2,
guarded fragment GF and fluted logic FL.

The suffix intersection is a generalization of intersection which can
operate on relations of different arity. For example R(x , y) ∧ P(y)
is equivalent to R∩̇P.

Algebraic characterizations for FO2,GF and FL

Theorem
GF and GRA(e, p, s, \, ∩̇,∃) are sententially equiexpressive.

Theorem
FO2 and GRA(e, s,¬, ∩̇, ∃) are sententially equiexpressive over
vocabularies with at most binary relation symbols.

Theorem
FL and GRA(¬, ∩̇, ∃́) are equiexpressive.

Algebraic characterizations for FO2,GF and FL

Theorem
GF and GRA(e, p, s, \, ∩̇,∃) are sententially equiexpressive.

Theorem
FO2 and GRA(e, s,¬, ∩̇, ∃) are sententially equiexpressive over
vocabularies with at most binary relation symbols.

Theorem
FL and GRA(¬, ∩̇, ∃́) are equiexpressive.

Algebraic characterizations for FO2,GF and FL

Theorem
GF and GRA(e, p, s, \, ∩̇,∃) are sententially equiexpressive.

Theorem
FO2 and GRA(e, s,¬, ∩̇, ∃) are sententially equiexpressive over
vocabularies with at most binary relation symbols.

Theorem
FL and GRA(¬, ∩̇, ∃́) are equiexpressive.

