
Algebraic classifications for
fragments of first-order logic

and beyond

Reijo Jaakkola

Tampere University
Joint work with Antti Kuusisto

Funding: Theory of computational logics – Academy of Finland
grant 438874



Background
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Let A be a τ -model. Every term T in GRA defines an AD-relation
T A over A as follows.

R ) Here R is a k-ary relation symbol in τ , so R is a constant
term in the algebra. We define
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FO is contained in GRA

Identities x = x and x = y can be translated to u and IJ(u, u)
respectively.

The case of formulas R(vi1 , ..., vik ) is more involved. First note that
if no variable occurs twice in the tuple (vi1 , ..., vik ) and i1 < ... < ik ,
then we can translate R(vi1 , ..., vik ) simply to R.

In the other case start with R and then use p, s, I and ∃ to express
what elements are the same, after which we use to p and s to order
the remaining elements in the desired order.
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As an example consider the formula R(v2, v1, v2).

1. We start with the term R, which is equivalent to R(v1, v2, v3).

2. We first express that in every tuple the first and the third
element are the same. This can be done with the term IppR,
which is equivalent to v1 = v2 ∧ R(v2, v3, v1).

3. Next we reduce the arity of the term by using projection ∃.
This results in the term ∃IppR, which is equivalent to
R(v1, v2, v1).

4. We use s to swap the places of v1 and v2. The resulting term
s∃IppR is then equivalent to R(v2, v1, v2).
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Similar to the case of atomic formulas, if the formulas ϕ and ψ
share free variables, then we must express this using p, s, I and ∃.

Also we might have to use p and s to reorder elements in the
tuples. For example we could have a case like ϕ(v1, v3) ∧ ψ(v2).
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What happens to the complexity of satisfiability problem if we
remove some of the relation operators from GRA?

1. Every term in GRA\¬ is satisfiable.

2. The set of satisfiable terms of GRA\J is a regular language.

3. GRA\∃ and GRA\I are both NP-complete.

4. GRA(p, I ,¬, J,∃) is Π0
1-complete and thus removing u or s

does not lead to a decidable logic.

Complexity of GRA\p remains as an open problem, but we
conjecture that it is decidable.
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equivalent to first-order logic.

One can also study weaker, stronger as well as orthogonal systems.
For this purpose we provide a definition for a general relation
operator.
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Let ADA denote the set of all AD-relations over A. An
AD-structure is a tuple (A,T1, ...,Tk), where T1, ...,Tk ∈ ADA.

A bijection g : A→ B is an isomorphism between AD-structures
(A,T1, ...,Tk) and (B,S1, ...,Sk), if ar(Ti ) = ar(Si ), for every i ,
and g is an ordinary isomorphism between (A, rel(T1), ..., rel(Tk))
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Generalized relation operator

A k-ary relation operator f is a map that outputs for any given set
A, a k-ary function f A : (ADA)k → ADA.

We also require that f A is isomorphism invariant: if (A,T1, ...,Tk)
and (B,S1, ...,Sk) are isomorphic via g , then also
(A, f A(T1, ...,Tk)) and (B, f A(S1, ...,Sk)) are, likewise, isomorphic
via g .

Generalized quantifiers can be seen as a relation operators that
always output either ({∅}, 0) = >0 or (∅, 0) = ⊥0.
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Providing algebraic characterizations for decidable fragments can
be also used to compare different decidable fragments.

Using the suffix intersection operator ∩̇, we were able to give very
similar algebraic characterizations for the two-variable logic FO2,
guarded fragment GF and fluted logic FL.

The suffix intersection is a generalization of intersection which can
operate on relations of different arity. For example R(x , y) ∧ P(y)
is equivalent to R∩̇P.
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