
First-order logic with game-theoretic recursion

Reijo Jaakkola
reijo.jaakkola@tuni.fi

Tampere University

April 20, 2023

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 1 / 23

reijo.jaakkola@tuni.fi
reijo.jaakkola@tuni.fi

Background

Computational logic CL

CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of
recursively enumerable languages.

More precisely, for every Turing machine M we can find a
sentence ϕM of CL s.t. for every finite (relational) structure A the following conditions hold.

1 A |= ϕM iff M accepts A

2 A |= ¬ϕM iff M rejects A

3 ϕM is indeterminate on A iff the computation of M on A diverges

Conversely, if ϕ is a sentence of CL, then Mod(ϕ) is a recursively enumerable set of models.

CL extends standard first-order logic FO with two natural features.
1 The ability to modify the underlying model: adding new elements to the domain of the model,

new tuples to relations, new relations etc.
2 The ability to use recursion (looping) via self-reference.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 2 / 23

reijo.jaakkola@tuni.fi

Background

Computational logic CL

CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of
recursively enumerable languages. More precisely, for every Turing machine M we can find a
sentence ϕM of CL s.t. for every finite (relational) structure A the following conditions hold.

1 A |= ϕM iff M accepts A

2 A |= ¬ϕM iff M rejects A

3 ϕM is indeterminate on A iff the computation of M on A diverges

Conversely, if ϕ is a sentence of CL, then Mod(ϕ) is a recursively enumerable set of models.

CL extends standard first-order logic FO with two natural features.
1 The ability to modify the underlying model: adding new elements to the domain of the model,

new tuples to relations, new relations etc.
2 The ability to use recursion (looping) via self-reference.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 2 / 23

reijo.jaakkola@tuni.fi

Background

Computational logic CL

CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of
recursively enumerable languages. More precisely, for every Turing machine M we can find a
sentence ϕM of CL s.t. for every finite (relational) structure A the following conditions hold.

1 A |= ϕM iff M accepts A

2 A |= ¬ϕM iff M rejects A

3 ϕM is indeterminate on A iff the computation of M on A diverges

Conversely, if ϕ is a sentence of CL, then Mod(ϕ) is a recursively enumerable set of models.

CL extends standard first-order logic FO with two natural features.
1 The ability to modify the underlying model: adding new elements to the domain of the model,

new tuples to relations, new relations etc.
2 The ability to use recursion (looping) via self-reference.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 2 / 23

reijo.jaakkola@tuni.fi

Background

Computational logic CL

CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of
recursively enumerable languages. More precisely, for every Turing machine M we can find a
sentence ϕM of CL s.t. for every finite (relational) structure A the following conditions hold.

1 A |= ϕM iff M accepts A

2 A |= ¬ϕM iff M rejects A

3 ϕM is indeterminate on A iff the computation of M on A diverges

Conversely, if ϕ is a sentence of CL, then Mod(ϕ) is a recursively enumerable set of models.

CL extends standard first-order logic FO with two natural features.
1 The ability to modify the underlying model: adding new elements to the domain of the model,

new tuples to relations, new relations etc.
2 The ability to use recursion (looping) via self-reference.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 2 / 23

reijo.jaakkola@tuni.fi

Background

Computational logic CL

CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of
recursively enumerable languages. More precisely, for every Turing machine M we can find a
sentence ϕM of CL s.t. for every finite (relational) structure A the following conditions hold.

1 A |= ϕM iff M accepts A

2 A |= ¬ϕM iff M rejects A

3 ϕM is indeterminate on A iff the computation of M on A diverges

Conversely, if ϕ is a sentence of CL, then Mod(ϕ) is a recursively enumerable set of models.

CL extends standard first-order logic FO with two natural features.
1 The ability to modify the underlying model: adding new elements to the domain of the model,

new tuples to relations, new relations etc.
2 The ability to use recursion (looping) via self-reference.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 2 / 23

reijo.jaakkola@tuni.fi

Background

Computational logic CL

CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of
recursively enumerable languages. More precisely, for every Turing machine M we can find a
sentence ϕM of CL s.t. for every finite (relational) structure A the following conditions hold.

1 A |= ϕM iff M accepts A

2 A |= ¬ϕM iff M rejects A

3 ϕM is indeterminate on A iff the computation of M on A diverges

Conversely, if ϕ is a sentence of CL, then Mod(ϕ) is a recursively enumerable set of models.

CL extends standard first-order logic FO with two natural features.
1 The ability to modify the underlying model: adding new elements to the domain of the model,

new tuples to relations, new relations etc.
2 The ability to use recursion (looping) via self-reference.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 2 / 23

reijo.jaakkola@tuni.fi

Background

Computational logic CL

CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of
recursively enumerable languages. More precisely, for every Turing machine M we can find a
sentence ϕM of CL s.t. for every finite (relational) structure A the following conditions hold.

1 A |= ϕM iff M accepts A

2 A |= ¬ϕM iff M rejects A

3 ϕM is indeterminate on A iff the computation of M on A diverges

Conversely, if ϕ is a sentence of CL, then Mod(ϕ) is a recursively enumerable set of models.

CL extends standard first-order logic FO with two natural features.

1 The ability to modify the underlying model: adding new elements to the domain of the model,
new tuples to relations, new relations etc.

2 The ability to use recursion (looping) via self-reference.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 2 / 23

reijo.jaakkola@tuni.fi

Background

Computational logic CL

CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of
recursively enumerable languages. More precisely, for every Turing machine M we can find a
sentence ϕM of CL s.t. for every finite (relational) structure A the following conditions hold.

1 A |= ϕM iff M accepts A

2 A |= ¬ϕM iff M rejects A

3 ϕM is indeterminate on A iff the computation of M on A diverges

Conversely, if ϕ is a sentence of CL, then Mod(ϕ) is a recursively enumerable set of models.

CL extends standard first-order logic FO with two natural features.
1 The ability to modify the underlying model: adding new elements to the domain of the model,

new tuples to relations, new relations etc.

2 The ability to use recursion (looping) via self-reference.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 2 / 23

reijo.jaakkola@tuni.fi

Background

Computational logic CL

CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of
recursively enumerable languages. More precisely, for every Turing machine M we can find a
sentence ϕM of CL s.t. for every finite (relational) structure A the following conditions hold.

1 A |= ϕM iff M accepts A

2 A |= ¬ϕM iff M rejects A

3 ϕM is indeterminate on A iff the computation of M on A diverges

Conversely, if ϕ is a sentence of CL, then Mod(ϕ) is a recursively enumerable set of models.

CL extends standard first-order logic FO with two natural features.
1 The ability to modify the underlying model: adding new elements to the domain of the model,

new tuples to relations, new relations etc.
2 The ability to use recursion (looping) via self-reference.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 2 / 23

reijo.jaakkola@tuni.fi

Background

Recursion via self-reference

Logics with different kinds of recursive looping capacities have been widely studied in the
context of finite model theory.

1 FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

∀x∀y(¬x = y → [TCx,y Exy]xy)

Captures NL over ordered finite structures.
2 LFP: extension of FO with the least fixed point operator.

∀x∀y(¬x = y → [LFPx,y,X (Exy ∨ ∃z(Xxz ∧ Ezy))]xy)

Captures P over ordered finite structures.

In CL the recursion is implemented via self-reference (or go-to statements).

∀x∀y(¬x = y → L(Exy ∨ ∃z(Exz ∧ ∃x(x = z ∧ CL))))

Formulas are interpretated using game-theoretical semantics. We call the extension of FO with
this type of recursion SCL (static computational logic).

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 3 / 23

reijo.jaakkola@tuni.fi

Background

Recursion via self-reference

Logics with different kinds of recursive looping capacities have been widely studied in the
context of finite model theory.

1 FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

∀x∀y(¬x = y → [TCx,y Exy]xy)

Captures NL over ordered finite structures.
2 LFP: extension of FO with the least fixed point operator.

∀x∀y(¬x = y → [LFPx,y,X (Exy ∨ ∃z(Xxz ∧ Ezy))]xy)

Captures P over ordered finite structures.

In CL the recursion is implemented via self-reference (or go-to statements).

∀x∀y(¬x = y → L(Exy ∨ ∃z(Exz ∧ ∃x(x = z ∧ CL))))

Formulas are interpretated using game-theoretical semantics. We call the extension of FO with
this type of recursion SCL (static computational logic).

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 3 / 23

reijo.jaakkola@tuni.fi

Background

Recursion via self-reference

Logics with different kinds of recursive looping capacities have been widely studied in the
context of finite model theory.

1 FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

∀x∀y(¬x = y → [TCx,y Exy]xy)

Captures NL over ordered finite structures.

2 LFP: extension of FO with the least fixed point operator.

∀x∀y(¬x = y → [LFPx,y,X (Exy ∨ ∃z(Xxz ∧ Ezy))]xy)

Captures P over ordered finite structures.

In CL the recursion is implemented via self-reference (or go-to statements).

∀x∀y(¬x = y → L(Exy ∨ ∃z(Exz ∧ ∃x(x = z ∧ CL))))

Formulas are interpretated using game-theoretical semantics. We call the extension of FO with
this type of recursion SCL (static computational logic).

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 3 / 23

reijo.jaakkola@tuni.fi

Background

Recursion via self-reference

Logics with different kinds of recursive looping capacities have been widely studied in the
context of finite model theory.

1 FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

∀x∀y(¬x = y → [TCx,y Exy]xy)

Captures NL over ordered finite structures.
2 LFP: extension of FO with the least fixed point operator.

∀x∀y(¬x = y → [LFPx,y,X (Exy ∨ ∃z(Xxz ∧ Ezy))]xy)

Captures P over ordered finite structures.

In CL the recursion is implemented via self-reference (or go-to statements).

∀x∀y(¬x = y → L(Exy ∨ ∃z(Exz ∧ ∃x(x = z ∧ CL))))

Formulas are interpretated using game-theoretical semantics. We call the extension of FO with
this type of recursion SCL (static computational logic).

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 3 / 23

reijo.jaakkola@tuni.fi

Background

Recursion via self-reference

Logics with different kinds of recursive looping capacities have been widely studied in the
context of finite model theory.

1 FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

∀x∀y(¬x = y → [TCx,y Exy]xy)

Captures NL over ordered finite structures.
2 LFP: extension of FO with the least fixed point operator.

∀x∀y(¬x = y → [LFPx,y,X (Exy ∨ ∃z(Xxz ∧ Ezy))]xy)

Captures P over ordered finite structures.

In CL the recursion is implemented via self-reference (or go-to statements).

∀x∀y(¬x = y → L(Exy ∨ ∃z(Exz ∧ ∃x(x = z ∧ CL))))

Formulas are interpretated using game-theoretical semantics. We call the extension of FO with
this type of recursion SCL (static computational logic).

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 3 / 23

reijo.jaakkola@tuni.fi

Background

Recursion via self-reference

Logics with different kinds of recursive looping capacities have been widely studied in the
context of finite model theory.

1 FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

∀x∀y(¬x = y → [TCx,y Exy]xy)

Captures NL over ordered finite structures.
2 LFP: extension of FO with the least fixed point operator.

∀x∀y(¬x = y → [LFPx,y,X (Exy ∨ ∃z(Xxz ∧ Ezy))]xy)

Captures P over ordered finite structures.

In CL the recursion is implemented via self-reference (or go-to statements).

∀x∀y(¬x = y → L(Exy ∨ ∃z(Exz ∧ ∃x(x = z ∧ CL))))

Formulas are interpretated using game-theoretical semantics. We call the extension of FO with
this type of recursion SCL (static computational logic).

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 3 / 23

reijo.jaakkola@tuni.fi

Background

Recursion via self-reference

Logics with different kinds of recursive looping capacities have been widely studied in the
context of finite model theory.

1 FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

∀x∀y(¬x = y → [TCx,y Exy]xy)

Captures NL over ordered finite structures.
2 LFP: extension of FO with the least fixed point operator.

∀x∀y(¬x = y → [LFPx,y,X (Exy ∨ ∃z(Xxz ∧ Ezy))]xy)

Captures P over ordered finite structures.

In CL the recursion is implemented via self-reference (or go-to statements).

∀x∀y(¬x = y → L(Exy ∨ ∃z(Exz ∧ ∃x(x = z ∧ CL))))

Formulas are interpretated using game-theoretical semantics.

We call the extension of FO with
this type of recursion SCL (static computational logic).

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 3 / 23

reijo.jaakkola@tuni.fi

Background

Recursion via self-reference

Logics with different kinds of recursive looping capacities have been widely studied in the
context of finite model theory.

1 FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

∀x∀y(¬x = y → [TCx,y Exy]xy)

Captures NL over ordered finite structures.
2 LFP: extension of FO with the least fixed point operator.

∀x∀y(¬x = y → [LFPx,y,X (Exy ∨ ∃z(Xxz ∧ Ezy))]xy)

Captures P over ordered finite structures.

In CL the recursion is implemented via self-reference (or go-to statements).

∀x∀y(¬x = y → L(Exy ∨ ∃z(Exz ∧ ∃x(x = z ∧ CL))))

Formulas are interpretated using game-theoretical semantics. We call the extension of FO with
this type of recursion SCL (static computational logic).

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 3 / 23

reijo.jaakkola@tuni.fi

Background

Overview of the rest of the talk

1 Syntax & Semantics of SCL.

2 Validity problem of SCL.

3 Some results on the model theory of SCL.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 4 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Syntax of SCL

Definition

Fix a countable set LBS = {Ln | n ∈ N} of label symbols.

For reach relational vocabulary τ the set of
formulas SCL[τ] is defined by the following grammar:

ϕ ::= x = y | R(x) | CL | ¬ϕ | ϕ ∧ ϕ | ∃xϕ | Lϕ,

where R ∈ τ and L ∈ LBS.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 5 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Syntax of SCL

Definition

Fix a countable set LBS = {Ln | n ∈ N} of label symbols. For reach relational vocabulary τ the set of
formulas SCL[τ] is defined by the following grammar:

ϕ ::= x = y | R(x) | CL | ¬ϕ | ϕ ∧ ϕ | ∃xϕ | Lϕ,

where R ∈ τ and L ∈ LBS.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 5 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Game-theoretical semantics (GTS) for SCL

We associate to each τ -structure A, assignment s and a formula ϕ of SCL[τ] a two-player game
G∞(A, s, ϕ), which is played by Verifier and Falsifier.

We then define that

A, s |= ϕ ⇔ Verifier has a winning strategy in the game G∞(A, s, ϕ).

We call G∞ the unbounded evaluation game.

Positions of the game are triples (r , ψ,#), where r is the current assignment, ψ is a subformula
of ϕ and # ∈ {−,+}. Initial position is just (s, ϕ,+).

Rules for first-order connectives and atomic formulas are standard. Some examples.

Next position from (r ,¬ψ,+) is (r , ψ,−) and from (r ,¬ψ,−) the next position is (r , ψ,+).
If the position is (r , α,+), where α is an atomic formula, then Verifier wins if A, r |= α and
otherwise Falsifier wins.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 6 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Game-theoretical semantics (GTS) for SCL

We associate to each τ -structure A, assignment s and a formula ϕ of SCL[τ] a two-player game
G∞(A, s, ϕ), which is played by Verifier and Falsifier. We then define that

A, s |= ϕ ⇔ Verifier has a winning strategy in the game G∞(A, s, ϕ).

We call G∞ the unbounded evaluation game.

Positions of the game are triples (r , ψ,#), where r is the current assignment, ψ is a subformula
of ϕ and # ∈ {−,+}. Initial position is just (s, ϕ,+).

Rules for first-order connectives and atomic formulas are standard. Some examples.

Next position from (r ,¬ψ,+) is (r , ψ,−) and from (r ,¬ψ,−) the next position is (r , ψ,+).
If the position is (r , α,+), where α is an atomic formula, then Verifier wins if A, r |= α and
otherwise Falsifier wins.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 6 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Game-theoretical semantics (GTS) for SCL

We associate to each τ -structure A, assignment s and a formula ϕ of SCL[τ] a two-player game
G∞(A, s, ϕ), which is played by Verifier and Falsifier. We then define that

A, s |= ϕ ⇔ Verifier has a winning strategy in the game G∞(A, s, ϕ).

We call G∞ the unbounded evaluation game.

Positions of the game are triples (r , ψ,#), where r is the current assignment, ψ is a subformula
of ϕ and # ∈ {−,+}.

Initial position is just (s, ϕ,+).

Rules for first-order connectives and atomic formulas are standard. Some examples.

Next position from (r ,¬ψ,+) is (r , ψ,−) and from (r ,¬ψ,−) the next position is (r , ψ,+).
If the position is (r , α,+), where α is an atomic formula, then Verifier wins if A, r |= α and
otherwise Falsifier wins.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 6 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Game-theoretical semantics (GTS) for SCL

We associate to each τ -structure A, assignment s and a formula ϕ of SCL[τ] a two-player game
G∞(A, s, ϕ), which is played by Verifier and Falsifier. We then define that

A, s |= ϕ ⇔ Verifier has a winning strategy in the game G∞(A, s, ϕ).

We call G∞ the unbounded evaluation game.

Positions of the game are triples (r , ψ,#), where r is the current assignment, ψ is a subformula
of ϕ and # ∈ {−,+}. Initial position is just (s, ϕ,+).

Rules for first-order connectives and atomic formulas are standard. Some examples.

Next position from (r ,¬ψ,+) is (r , ψ,−) and from (r ,¬ψ,−) the next position is (r , ψ,+).
If the position is (r , α,+), where α is an atomic formula, then Verifier wins if A, r |= α and
otherwise Falsifier wins.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 6 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Game-theoretical semantics (GTS) for SCL

We associate to each τ -structure A, assignment s and a formula ϕ of SCL[τ] a two-player game
G∞(A, s, ϕ), which is played by Verifier and Falsifier. We then define that

A, s |= ϕ ⇔ Verifier has a winning strategy in the game G∞(A, s, ϕ).

We call G∞ the unbounded evaluation game.

Positions of the game are triples (r , ψ,#), where r is the current assignment, ψ is a subformula
of ϕ and # ∈ {−,+}. Initial position is just (s, ϕ,+).

Rules for first-order connectives and atomic formulas are standard. Some examples.

Next position from (r ,¬ψ,+) is (r , ψ,−) and from (r ,¬ψ,−) the next position is (r , ψ,+).
If the position is (r , α,+), where α is an atomic formula, then Verifier wins if A, r |= α and
otherwise Falsifier wins.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 6 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Game-theoretical semantics (GTS) for SCL

We associate to each τ -structure A, assignment s and a formula ϕ of SCL[τ] a two-player game
G∞(A, s, ϕ), which is played by Verifier and Falsifier. We then define that

A, s |= ϕ ⇔ Verifier has a winning strategy in the game G∞(A, s, ϕ).

We call G∞ the unbounded evaluation game.

Positions of the game are triples (r , ψ,#), where r is the current assignment, ψ is a subformula
of ϕ and # ∈ {−,+}. Initial position is just (s, ϕ,+).

Rules for first-order connectives and atomic formulas are standard. Some examples.

Next position from (r ,¬ψ,+) is (r , ψ,−) and from (r ,¬ψ,−) the next position is (r , ψ,+).

If the position is (r , α,+), where α is an atomic formula, then Verifier wins if A, r |= α and
otherwise Falsifier wins.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 6 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Game-theoretical semantics (GTS) for SCL

We associate to each τ -structure A, assignment s and a formula ϕ of SCL[τ] a two-player game
G∞(A, s, ϕ), which is played by Verifier and Falsifier. We then define that

A, s |= ϕ ⇔ Verifier has a winning strategy in the game G∞(A, s, ϕ).

We call G∞ the unbounded evaluation game.

Positions of the game are triples (r , ψ,#), where r is the current assignment, ψ is a subformula
of ϕ and # ∈ {−,+}. Initial position is just (s, ϕ,+).

Rules for first-order connectives and atomic formulas are standard. Some examples.

Next position from (r ,¬ψ,+) is (r , ψ,−) and from (r ,¬ψ,−) the next position is (r , ψ,+).
If the position is (r , α,+), where α is an atomic formula, then Verifier wins if A, r |= α and
otherwise Falsifier wins.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 6 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Game-theoretical semantics (GTS) for SCL

Next position from (r , Lψ,#) is (r , ψ,#).

Next position from (r ,CL,#) is (r ,Rf(CL),#), where Rf(CL) is the reference formula of CL. It
is defined as the subformula occurrence Lψ such that there is a directed path from Lψ to CL in
the syntax tree of ϕ, and L does not occur strictly between Lψ and CL on that path.

∃x

L

∃y

∧

y < x ∃x

∧

x = y CL

Neither player wins infinitely long plays.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 7 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Game-theoretical semantics (GTS) for SCL

Next position from (r , Lψ,#) is (r , ψ,#).

Next position from (r ,CL,#) is (r ,Rf(CL),#), where Rf(CL) is the reference formula of CL.

It
is defined as the subformula occurrence Lψ such that there is a directed path from Lψ to CL in
the syntax tree of ϕ, and L does not occur strictly between Lψ and CL on that path.

∃x

L

∃y

∧

y < x ∃x

∧

x = y CL

Neither player wins infinitely long plays.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 7 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Game-theoretical semantics (GTS) for SCL

Next position from (r , Lψ,#) is (r , ψ,#).

Next position from (r ,CL,#) is (r ,Rf(CL),#), where Rf(CL) is the reference formula of CL. It
is defined as the subformula occurrence Lψ such that there is a directed path from Lψ to CL in
the syntax tree of ϕ, and L does not occur strictly between Lψ and CL on that path.

∃x

L

∃y

∧

y < x ∃x

∧

x = y CL

Neither player wins infinitely long plays.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 7 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Game-theoretical semantics (GTS) for SCL

Next position from (r , Lψ,#) is (r , ψ,#).

Next position from (r ,CL,#) is (r ,Rf(CL),#), where Rf(CL) is the reference formula of CL. It
is defined as the subformula occurrence Lψ such that there is a directed path from Lψ to CL in
the syntax tree of ϕ, and L does not occur strictly between Lψ and CL on that path.

∃x

L

∃y

∧

y < x ∃x

∧

x = y CL

Neither player wins infinitely long plays.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 7 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Game-theoretical semantics (GTS) for SCL

Next position from (r , Lψ,#) is (r , ψ,#).

Next position from (r ,CL,#) is (r ,Rf(CL),#), where Rf(CL) is the reference formula of CL. It
is defined as the subformula occurrence Lψ such that there is a directed path from Lψ to CL in
the syntax tree of ϕ, and L does not occur strictly between Lψ and CL on that path.

∃x

L

∃y

∧

y < x ∃x

∧

x = y CL

Neither player wins infinitely long plays.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 7 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Bounded SCL

Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game G∞
with the bounded evaluation game Gω .

Given a triple (A, s, ϕ), the game Gω(A, s, ϕ) proceeds as follows.
1 Falsifier chooses a natural number n′ ∈ N.
2 Verifier chooses a natural number n ≥ n′.
3 Players play the game n-bounded evaluation game Gn(A, s, ϕ).

The n-bounded evaluation game Gn works like G∞ with the exception that looping atoms can
be visited at most n times. If the players reach a looping atom after they have visited looping
atoms n times, the game stops and neither player wins the game.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 8 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Bounded SCL

Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game G∞
with the bounded evaluation game Gω .

Given a triple (A, s, ϕ), the game Gω(A, s, ϕ) proceeds as follows.

1 Falsifier chooses a natural number n′ ∈ N.
2 Verifier chooses a natural number n ≥ n′.
3 Players play the game n-bounded evaluation game Gn(A, s, ϕ).

The n-bounded evaluation game Gn works like G∞ with the exception that looping atoms can
be visited at most n times. If the players reach a looping atom after they have visited looping
atoms n times, the game stops and neither player wins the game.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 8 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Bounded SCL

Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game G∞
with the bounded evaluation game Gω .

Given a triple (A, s, ϕ), the game Gω(A, s, ϕ) proceeds as follows.
1 Falsifier chooses a natural number n′ ∈ N.

2 Verifier chooses a natural number n ≥ n′.
3 Players play the game n-bounded evaluation game Gn(A, s, ϕ).

The n-bounded evaluation game Gn works like G∞ with the exception that looping atoms can
be visited at most n times. If the players reach a looping atom after they have visited looping
atoms n times, the game stops and neither player wins the game.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 8 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Bounded SCL

Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game G∞
with the bounded evaluation game Gω .

Given a triple (A, s, ϕ), the game Gω(A, s, ϕ) proceeds as follows.
1 Falsifier chooses a natural number n′ ∈ N.
2 Verifier chooses a natural number n ≥ n′.

3 Players play the game n-bounded evaluation game Gn(A, s, ϕ).

The n-bounded evaluation game Gn works like G∞ with the exception that looping atoms can
be visited at most n times. If the players reach a looping atom after they have visited looping
atoms n times, the game stops and neither player wins the game.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 8 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Bounded SCL

Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game G∞
with the bounded evaluation game Gω .

Given a triple (A, s, ϕ), the game Gω(A, s, ϕ) proceeds as follows.
1 Falsifier chooses a natural number n′ ∈ N.
2 Verifier chooses a natural number n ≥ n′.
3 Players play the game n-bounded evaluation game Gn(A, s, ϕ).

The n-bounded evaluation game Gn works like G∞ with the exception that looping atoms can
be visited at most n times. If the players reach a looping atom after they have visited looping
atoms n times, the game stops and neither player wins the game.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 8 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Bounded SCL

Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game G∞
with the bounded evaluation game Gω .

Given a triple (A, s, ϕ), the game Gω(A, s, ϕ) proceeds as follows.
1 Falsifier chooses a natural number n′ ∈ N.
2 Verifier chooses a natural number n ≥ n′.
3 Players play the game n-bounded evaluation game Gn(A, s, ϕ).

The n-bounded evaluation game Gn works like G∞ with the exception that looping atoms can
be visited at most n times.

If the players reach a looping atom after they have visited looping
atoms n times, the game stops and neither player wins the game.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 8 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

Bounded SCL

Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game G∞
with the bounded evaluation game Gω .

Given a triple (A, s, ϕ), the game Gω(A, s, ϕ) proceeds as follows.
1 Falsifier chooses a natural number n′ ∈ N.
2 Verifier chooses a natural number n ≥ n′.
3 Players play the game n-bounded evaluation game Gn(A, s, ϕ).

The n-bounded evaluation game Gn works like G∞ with the exception that looping atoms can
be visited at most n times. If the players reach a looping atom after they have visited looping
atoms n times, the game stops and neither player wins the game.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 8 / 23

reijo.jaakkola@tuni.fi

Syntax and semantics

BndSCL vs SCL

Example

¬P

¬P

¬P

¬P

P

...

¬P

¬P

P

¬P

P

P

Consider the formula ϕ(x) := L(P(x) ∨ ∀y(R(x , y) → ∃x(x = y ∧ CL))). Under unbounded semantics,
ϕ is true at the “root” of the above structure, while under bounded semantics it is not true.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 9 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL.

The nth unfolding of ϕ, denoted by Ψn
ϕ, is defined inductively as follows.

1 The zeroeth unfolding Ψ0
ϕ of ϕ is defined to be the formula ϕ.

2 The (k + 1)st unfolding Ψk+1
ϕ

is the formula obtained from the kth unfolding Ψk
ϕ by replacing

every looping atom CL in Ψk
ϕ by the corresponding reference formula Rf(CL) in Ψk

ϕ.

Example

Consider the formula ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ0
ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ1
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL))

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 10 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. The nth unfolding of ϕ, denoted by Ψn
ϕ, is defined inductively as follows.

1 The zeroeth unfolding Ψ0
ϕ of ϕ is defined to be the formula ϕ.

2 The (k + 1)st unfolding Ψk+1
ϕ

is the formula obtained from the kth unfolding Ψk
ϕ by replacing

every looping atom CL in Ψk
ϕ by the corresponding reference formula Rf(CL) in Ψk

ϕ.

Example

Consider the formula ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ0
ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ1
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL))

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 10 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. The nth unfolding of ϕ, denoted by Ψn
ϕ, is defined inductively as follows.

1 The zeroeth unfolding Ψ0
ϕ of ϕ is defined to be the formula ϕ.

2 The (k + 1)st unfolding Ψk+1
ϕ

is the formula obtained from the kth unfolding Ψk
ϕ by replacing

every looping atom CL in Ψk
ϕ by the corresponding reference formula Rf(CL) in Ψk

ϕ.

Example

Consider the formula ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ0
ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ1
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL))

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 10 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. The nth unfolding of ϕ, denoted by Ψn
ϕ, is defined inductively as follows.

1 The zeroeth unfolding Ψ0
ϕ of ϕ is defined to be the formula ϕ.

2 The (k + 1)st unfolding Ψk+1
ϕ

is the formula obtained from the kth unfolding Ψk
ϕ by replacing

every looping atom CL in Ψk
ϕ by the corresponding reference formula Rf(CL) in Ψk

ϕ.

Example

Consider the formula ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ0
ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ1
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL))

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 10 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. The nth unfolding of ϕ, denoted by Ψn
ϕ, is defined inductively as follows.

1 The zeroeth unfolding Ψ0
ϕ of ϕ is defined to be the formula ϕ.

2 The (k + 1)st unfolding Ψk+1
ϕ

is the formula obtained from the kth unfolding Ψk
ϕ by replacing

every looping atom CL in Ψk
ϕ by the corresponding reference formula Rf(CL) in Ψk

ϕ.

Example

Consider the formula ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ0
ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ1
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL))

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 10 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. The nth unfolding of ϕ, denoted by Ψn
ϕ, is defined inductively as follows.

1 The zeroeth unfolding Ψ0
ϕ of ϕ is defined to be the formula ϕ.

2 The (k + 1)st unfolding Ψk+1
ϕ

is the formula obtained from the kth unfolding Ψk
ϕ by replacing

every looping atom CL in Ψk
ϕ by the corresponding reference formula Rf(CL) in Ψk

ϕ.

Example

Consider the formula ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ0
ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ1
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL))

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 10 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. The nth unfolding of ϕ, denoted by Ψn
ϕ, is defined inductively as follows.

1 The zeroeth unfolding Ψ0
ϕ of ϕ is defined to be the formula ϕ.

2 The (k + 1)st unfolding Ψk+1
ϕ

is the formula obtained from the kth unfolding Ψk
ϕ by replacing

every looping atom CL in Ψk
ϕ by the corresponding reference formula Rf(CL) in Ψk

ϕ.

Example

Consider the formula ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ0
ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ1
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL))

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 10 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. The nth unfolding of ϕ, denoted by Ψn
ϕ, is defined inductively as follows.

1 The zeroeth unfolding Ψ0
ϕ of ϕ is defined to be the formula ϕ.

2 The (k + 1)st unfolding Ψk+1
ϕ

is the formula obtained from the kth unfolding Ψk
ϕ by replacing

every looping atom CL in Ψk
ϕ by the corresponding reference formula Rf(CL) in Ψk

ϕ.

Example

Consider the formula ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ0
ϕ := ∃xL∃y(R(x , y) ∧ CL).

Ψ1
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL))

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 10 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL.

We define the nth approximant (or n-approximant) Φn
ϕ of ϕ to be the

FO-formula obtained from the nth unfolding Ψn
ϕ by removing all the label symbols and replacing each

occurrence of each looping atom by

1 ⊥ if the occurrence of the atom is positive in Ψn
ϕ,

2 ⊤ if the occurrence is negative in Ψn
ϕ.

Example

Recall the formula ϕ := ∃xL∃y(R(x , y) ∧ CL). Since

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

we have that
Φ2

ϕ := ∃x∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ⊥)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 11 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. We define the nth approximant (or n-approximant) Φn
ϕ of ϕ to be the

FO-formula obtained from the nth unfolding Ψn
ϕ by removing all the label symbols and replacing each

occurrence of each looping atom by

1 ⊥ if the occurrence of the atom is positive in Ψn
ϕ,

2 ⊤ if the occurrence is negative in Ψn
ϕ.

Example

Recall the formula ϕ := ∃xL∃y(R(x , y) ∧ CL). Since

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

we have that
Φ2

ϕ := ∃x∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ⊥)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 11 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. We define the nth approximant (or n-approximant) Φn
ϕ of ϕ to be the

FO-formula obtained from the nth unfolding Ψn
ϕ by removing all the label symbols and replacing each

occurrence of each looping atom by

1 ⊥ if the occurrence of the atom is positive in Ψn
ϕ,

2 ⊤ if the occurrence is negative in Ψn
ϕ.

Example

Recall the formula ϕ := ∃xL∃y(R(x , y) ∧ CL). Since

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

we have that
Φ2

ϕ := ∃x∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ⊥)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 11 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. We define the nth approximant (or n-approximant) Φn
ϕ of ϕ to be the

FO-formula obtained from the nth unfolding Ψn
ϕ by removing all the label symbols and replacing each

occurrence of each looping atom by

1 ⊥ if the occurrence of the atom is positive in Ψn
ϕ,

2 ⊤ if the occurrence is negative in Ψn
ϕ.

Example

Recall the formula ϕ := ∃xL∃y(R(x , y) ∧ CL). Since

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

we have that
Φ2

ϕ := ∃x∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ⊥)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 11 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. We define the nth approximant (or n-approximant) Φn
ϕ of ϕ to be the

FO-formula obtained from the nth unfolding Ψn
ϕ by removing all the label symbols and replacing each

occurrence of each looping atom by

1 ⊥ if the occurrence of the atom is positive in Ψn
ϕ,

2 ⊤ if the occurrence is negative in Ψn
ϕ.

Example

Recall the formula ϕ := ∃xL∃y(R(x , y) ∧ CL).

Since

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

we have that
Φ2

ϕ := ∃x∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ⊥)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 11 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. We define the nth approximant (or n-approximant) Φn
ϕ of ϕ to be the

FO-formula obtained from the nth unfolding Ψn
ϕ by removing all the label symbols and replacing each

occurrence of each looping atom by

1 ⊥ if the occurrence of the atom is positive in Ψn
ϕ,

2 ⊤ if the occurrence is negative in Ψn
ϕ.

Example

Recall the formula ϕ := ∃xL∃y(R(x , y) ∧ CL). Since

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

we have that
Φ2

ϕ := ∃x∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ⊥)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 11 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Definition

Let ϕ be a formula of SCL. We define the nth approximant (or n-approximant) Φn
ϕ of ϕ to be the

FO-formula obtained from the nth unfolding Ψn
ϕ by removing all the label symbols and replacing each

occurrence of each looping atom by

1 ⊥ if the occurrence of the atom is positive in Ψn
ϕ,

2 ⊤ if the occurrence is negative in Ψn
ϕ.

Example

Recall the formula ϕ := ∃xL∃y(R(x , y) ∧ CL). Since

Ψ2
ϕ := ∃xL∃y(R(x , y) ∧ L∃y(R(x , y) ∧ L∃y(R(x , y) ∧ CL)))

we have that
Φ2

ϕ := ∃x∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ∃y(R(x , y) ∧ ⊥)))

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 11 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

BndSCL as a fragment of Lω
ω1ω

Lemma

Let ϕ be a formula of SCL.

Then for every structure A and assignment s we have that

Verifier has a winning strategy in Gn(A, s, ϕ) ⇔ A, s |= Φn
ϕ

Theorem

Let ϕ be a formula of BndSCL. Then for every structure A and assignment s we have that

Verifier has a winning strategy in Gω(A, s, ϕ) ⇔ A, s |=
∨
n∈N

Φn
ϕ

In particular, BndSCL ≤ Lω
ω1ω .

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 12 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

BndSCL as a fragment of Lω
ω1ω

Lemma

Let ϕ be a formula of SCL. Then for every structure A and assignment s we have that

Verifier has a winning strategy in Gn(A, s, ϕ) ⇔ A, s |= Φn
ϕ

Theorem

Let ϕ be a formula of BndSCL. Then for every structure A and assignment s we have that

Verifier has a winning strategy in Gω(A, s, ϕ) ⇔ A, s |=
∨
n∈N

Φn
ϕ

In particular, BndSCL ≤ Lω
ω1ω .

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 12 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

BndSCL as a fragment of Lω
ω1ω

Lemma

Let ϕ be a formula of SCL. Then for every structure A and assignment s we have that

Verifier has a winning strategy in Gn(A, s, ϕ) ⇔ A, s |= Φn
ϕ

Theorem

Let ϕ be a formula of BndSCL.

Then for every structure A and assignment s we have that

Verifier has a winning strategy in Gω(A, s, ϕ) ⇔ A, s |=
∨
n∈N

Φn
ϕ

In particular, BndSCL ≤ Lω
ω1ω .

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 12 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

BndSCL as a fragment of Lω
ω1ω

Lemma

Let ϕ be a formula of SCL. Then for every structure A and assignment s we have that

Verifier has a winning strategy in Gn(A, s, ϕ) ⇔ A, s |= Φn
ϕ

Theorem

Let ϕ be a formula of BndSCL. Then for every structure A and assignment s we have that

Verifier has a winning strategy in Gω(A, s, ϕ) ⇔ A, s |=
∨
n∈N

Φn
ϕ

In particular, BndSCL ≤ Lω
ω1ω .

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 12 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

BndSCL as a fragment of Lω
ω1ω

Lemma

Let ϕ be a formula of SCL. Then for every structure A and assignment s we have that

Verifier has a winning strategy in Gn(A, s, ϕ) ⇔ A, s |= Φn
ϕ

Theorem

Let ϕ be a formula of BndSCL. Then for every structure A and assignment s we have that

Verifier has a winning strategy in Gω(A, s, ϕ) ⇔ A, s |=
∨
n∈N

Φn
ϕ

In particular, BndSCL ≤ Lω
ω1ω .

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 12 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

SCL ̸≤ BndSCL

Example

Connectivity of a graph is not definable in BndSCL. For example, consider the following graphs

G1 :

G2 :

These graphs are elementary equivalent, which implies that for every BndSCL sentence ϕ we have that
if G1 |= ϕ, then G2 |= ϕ.

Problem

Is BndSCL contained in SCL?

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 13 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

SCL ̸≤ BndSCL

Example

Connectivity of a graph is not definable in BndSCL. For example, consider the following graphs

G1 :

G2 :

These graphs are elementary equivalent, which implies that for every BndSCL sentence ϕ we have that
if G1 |= ϕ, then G2 |= ϕ.

Problem

Is BndSCL contained in SCL?

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 13 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Valid sentences of BndSCL are RE

Theorem

Let ϕ be a sentence of BndSCL. Now ϕ is valid if and only if Φn
ϕ is valid, for some n ∈ N.

Proof.

(⇐) If Verifier has a winning strategy in Gn(A, ϕ), then they have a winning strategy in Gω(A, ϕ).

(⇒) Suppose that ¬Φn
ϕ is satisfiable, for every n ∈ N. Since ¬Φn

ϕ |= ¬Φn′

ϕ , for every n′ < n, using
compactness we get that {¬Φn

ϕ | n ∈ N} is satisfiable. Since ϕ is truth equivalent with
∨

n∈N
Φn

ϕ,
there must exists a model A such that Verifier does not have a winning strategy in Gω(A, ϕ).

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 14 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Valid sentences of BndSCL are RE

Theorem

Let ϕ be a sentence of BndSCL. Now ϕ is valid if and only if Φn
ϕ is valid, for some n ∈ N.

Proof.

(⇐) If Verifier has a winning strategy in Gn(A, ϕ), then they have a winning strategy in Gω(A, ϕ).

(⇒) Suppose that ¬Φn
ϕ is satisfiable, for every n ∈ N. Since ¬Φn

ϕ |= ¬Φn′

ϕ , for every n′ < n, using
compactness we get that {¬Φn

ϕ | n ∈ N} is satisfiable. Since ϕ is truth equivalent with
∨

n∈N
Φn

ϕ,
there must exists a model A such that Verifier does not have a winning strategy in Gω(A, ϕ).

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 14 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Valid sentences of BndSCL are RE

Theorem

Let ϕ be a sentence of BndSCL. Now ϕ is valid if and only if Φn
ϕ is valid, for some n ∈ N.

Proof.

(⇐) If Verifier has a winning strategy in Gn(A, ϕ), then they have a winning strategy in Gω(A, ϕ).

(⇒) Suppose that ¬Φn
ϕ is satisfiable, for every n ∈ N. Since ¬Φn

ϕ |= ¬Φn′

ϕ , for every n′ < n, using
compactness we get that {¬Φn

ϕ | n ∈ N} is satisfiable. Since ϕ is truth equivalent with
∨

n∈N
Φn

ϕ,
there must exists a model A such that Verifier does not have a winning strategy in Gω(A, ϕ).

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 14 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Valid sentences of SCL are RE

Theorem

Let ϕ be a sentence of SCL. Now ϕ is valid if and only if Φn
ϕ is valid, for some n ∈ N.

Proof.

(⇐) If Verifier has a winning strategy in Gn(A, ϕ), then they have a winning strategy in G∞(A, ϕ).

(⇒) If there exists for every n ∈ N a structure An such that Verifier does not have a winning strategy
in Gn(An, ϕ), then one can use compactness theorem for FO to construct a structure A such that
Verifier does not have a winning strategy in G∞(A, ϕ).

Corollary

Valid sentences of BndSCL and SCL coincide.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 15 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Valid sentences of SCL are RE

Theorem

Let ϕ be a sentence of SCL. Now ϕ is valid if and only if Φn
ϕ is valid, for some n ∈ N.

Proof.

(⇐) If Verifier has a winning strategy in Gn(A, ϕ), then they have a winning strategy in G∞(A, ϕ).

(⇒) If there exists for every n ∈ N a structure An such that Verifier does not have a winning strategy
in Gn(An, ϕ), then one can use compactness theorem for FO to construct a structure A such that
Verifier does not have a winning strategy in G∞(A, ϕ).

Corollary

Valid sentences of BndSCL and SCL coincide.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 15 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Valid sentences of SCL are RE

Theorem

Let ϕ be a sentence of SCL. Now ϕ is valid if and only if Φn
ϕ is valid, for some n ∈ N.

Proof.

(⇐) If Verifier has a winning strategy in Gn(A, ϕ), then they have a winning strategy in G∞(A, ϕ).

(⇒) If there exists for every n ∈ N a structure An such that Verifier does not have a winning strategy
in Gn(An, ϕ), then one can use compactness theorem for FO to construct a structure A such that
Verifier does not have a winning strategy in G∞(A, ϕ).

Corollary

Valid sentences of BndSCL and SCL coincide.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 15 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Valid sentences of SCL are RE

Theorem

Let ϕ be a sentence of SCL. Now ϕ is valid if and only if Φn
ϕ is valid, for some n ∈ N.

Proof.

(⇐) If Verifier has a winning strategy in Gn(A, ϕ), then they have a winning strategy in G∞(A, ϕ).

(⇒) If there exists for every n ∈ N a structure An such that Verifier does not have a winning strategy
in Gn(An, ϕ), then one can use compactness theorem for FO to construct a structure A such that
Verifier does not have a winning strategy in G∞(A, ϕ).

Corollary

Valid sentences of BndSCL and SCL coincide.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 15 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Weakly complete axiomatization for SCL

In our work we also developed a natural deduction style proof system which is weakly complete:
if Σ is a set of FO-sentences and ϕ is a sentence of SCL, then Σ |= ϕ iff Σ ⊢ ϕ in our system.

The main idea is to show that for each formula ϕ we have that Φn
ϕ ⊢ ϕ.

As an important step of our proof we show that our system can prove that every SCL sentence
is equivalent to a sentence in strong negation normal form: negation only occurs in front of
atomic FO-formulas.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 16 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Weakly complete axiomatization for SCL

In our work we also developed a natural deduction style proof system which is weakly complete:
if Σ is a set of FO-sentences and ϕ is a sentence of SCL, then Σ |= ϕ iff Σ ⊢ ϕ in our system.

The main idea is to show that for each formula ϕ we have that Φn
ϕ ⊢ ϕ.

As an important step of our proof we show that our system can prove that every SCL sentence
is equivalent to a sentence in strong negation normal form: negation only occurs in front of
atomic FO-formulas.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 16 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Weakly complete axiomatization for SCL

In our work we also developed a natural deduction style proof system which is weakly complete:
if Σ is a set of FO-sentences and ϕ is a sentence of SCL, then Σ |= ϕ iff Σ ⊢ ϕ in our system.

The main idea is to show that for each formula ϕ we have that Φn
ϕ ⊢ ϕ.

As an important step of our proof we show that our system can prove that every SCL sentence
is equivalent to a sentence in strong negation normal form: negation only occurs in front of
atomic FO-formulas.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 16 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Weakly complete axiomatization for SCL

In our work we also developed a natural deduction style proof system which is weakly complete:
if Σ is a set of FO-sentences and ϕ is a sentence of SCL, then Σ |= ϕ iff Σ ⊢ ϕ in our system.

The main idea is to show that for each formula ϕ we have that Φn
ϕ ⊢ ϕ.

As an important step of our proof we show that our system can prove that every SCL sentence
is equivalent to a sentence in strong negation normal form: negation only occurs in front of
atomic FO-formulas.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 16 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Validity problem for SCL2

Theorem

For every sentence ϕ of SCLk there exists a sentence Ψ of ESOk such that for every structure A we
have the following equivalence

Verifier does not have a winning strategy in G∞(A, ϕ) ⇔ A |= Ψ

Furthermore, Ψ can be computed from ϕ in polynomial time

Corollary

1 Every sentence of SCLk can be translated in polynomial time to an equivalent sentence of ∀SOk .

2 The validity problem for SCL2 is coNExpTime-complete.

Problem

Are the satisfiability problems of BndSCL2 and SCL2 decidable? BndSCL2 has the finite model
property and SCL2 does not have it.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 17 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Validity problem for SCL2

Theorem

For every sentence ϕ of SCLk there exists a sentence Ψ of ESOk such that for every structure A we
have the following equivalence

Verifier does not have a winning strategy in G∞(A, ϕ) ⇔ A |= Ψ

Furthermore, Ψ can be computed from ϕ in polynomial time

Corollary

1 Every sentence of SCLk can be translated in polynomial time to an equivalent sentence of ∀SOk .

2 The validity problem for SCL2 is coNExpTime-complete.

Problem

Are the satisfiability problems of BndSCL2 and SCL2 decidable? BndSCL2 has the finite model
property and SCL2 does not have it.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 17 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Validity problem for SCL2

Theorem

For every sentence ϕ of SCLk there exists a sentence Ψ of ESOk such that for every structure A we
have the following equivalence

Verifier does not have a winning strategy in G∞(A, ϕ) ⇔ A |= Ψ

Furthermore, Ψ can be computed from ϕ in polynomial time

Corollary

1 Every sentence of SCLk can be translated in polynomial time to an equivalent sentence of ∀SOk .

2 The validity problem for SCL2 is coNExpTime-complete.

Problem

Are the satisfiability problems of BndSCL2 and SCL2 decidable? BndSCL2 has the finite model
property and SCL2 does not have it.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 17 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Validity problem for SCL2

Theorem

For every sentence ϕ of SCLk there exists a sentence Ψ of ESOk such that for every structure A we
have the following equivalence

Verifier does not have a winning strategy in G∞(A, ϕ) ⇔ A |= Ψ

Furthermore, Ψ can be computed from ϕ in polynomial time

Corollary

1 Every sentence of SCLk can be translated in polynomial time to an equivalent sentence of ∀SOk .

2 The validity problem for SCL2 is coNExpTime-complete.

Problem

Are the satisfiability problems of BndSCL2 and SCL2 decidable? BndSCL2 has the finite model
property and SCL2 does not have it.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 17 / 23

reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Validity problem for SCL2

Theorem

For every sentence ϕ of SCLk there exists a sentence Ψ of ESOk such that for every structure A we
have the following equivalence

Verifier does not have a winning strategy in G∞(A, ϕ) ⇔ A |= Ψ

Furthermore, Ψ can be computed from ϕ in polynomial time

Corollary

1 Every sentence of SCLk can be translated in polynomial time to an equivalent sentence of ∀SOk .

2 The validity problem for SCL2 is coNExpTime-complete.

Problem

Are the satisfiability problems of BndSCL2 and SCL2 decidable? BndSCL2 has the finite model
property and SCL2 does not have it.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 17 / 23

reijo.jaakkola@tuni.fi

Some model theory

Downward Löwenheim–Skolem Theorem

Theorem

Let ϕ be a sentence of BndSCL or SCL and let A be a model of ϕ.

Then there exists a countable
substructure B of A such that B |= ϕ.

Proof.

Proof for SCL. Fix a (positional) winning strategy σ for the Verifier in the game G∞(A, ϕ). We want
to construct a countable model B so that Eloise has a winning strategy also in the game G∞(B, ϕ).
Pick an arbitrary b ∈ A. We define a sequence of sets (Bn)n∈N inductively such that, firstly B0 = {b},
and then

Bn+1 = Bn ∪ {d | σ((∃xψ, s,+)) = d},

where range(s) ⊆ Bn and ∃xψ ∈ Subf(ϕ). Let B be the substructure of A induced by the set⋃
n∈N

Bn. B is clearly countable.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 18 / 23

reijo.jaakkola@tuni.fi

Some model theory

Downward Löwenheim–Skolem Theorem

Theorem

Let ϕ be a sentence of BndSCL or SCL and let A be a model of ϕ. Then there exists a countable
substructure B of A such that B |= ϕ.

Proof.

Proof for SCL. Fix a (positional) winning strategy σ for the Verifier in the game G∞(A, ϕ). We want
to construct a countable model B so that Eloise has a winning strategy also in the game G∞(B, ϕ).
Pick an arbitrary b ∈ A. We define a sequence of sets (Bn)n∈N inductively such that, firstly B0 = {b},
and then

Bn+1 = Bn ∪ {d | σ((∃xψ, s,+)) = d},

where range(s) ⊆ Bn and ∃xψ ∈ Subf(ϕ). Let B be the substructure of A induced by the set⋃
n∈N

Bn. B is clearly countable.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 18 / 23

reijo.jaakkola@tuni.fi

Some model theory

Downward Löwenheim–Skolem Theorem

Theorem

Let ϕ be a sentence of BndSCL or SCL and let A be a model of ϕ. Then there exists a countable
substructure B of A such that B |= ϕ.

Proof.

Proof for SCL.

Fix a (positional) winning strategy σ for the Verifier in the game G∞(A, ϕ). We want
to construct a countable model B so that Eloise has a winning strategy also in the game G∞(B, ϕ).
Pick an arbitrary b ∈ A. We define a sequence of sets (Bn)n∈N inductively such that, firstly B0 = {b},
and then

Bn+1 = Bn ∪ {d | σ((∃xψ, s,+)) = d},

where range(s) ⊆ Bn and ∃xψ ∈ Subf(ϕ). Let B be the substructure of A induced by the set⋃
n∈N

Bn. B is clearly countable.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 18 / 23

reijo.jaakkola@tuni.fi

Some model theory

Downward Löwenheim–Skolem Theorem

Theorem

Let ϕ be a sentence of BndSCL or SCL and let A be a model of ϕ. Then there exists a countable
substructure B of A such that B |= ϕ.

Proof.

Proof for SCL. Fix a (positional) winning strategy σ for the Verifier in the game G∞(A, ϕ). We want
to construct a countable model B so that Eloise has a winning strategy also in the game G∞(B, ϕ).

Pick an arbitrary b ∈ A. We define a sequence of sets (Bn)n∈N inductively such that, firstly B0 = {b},
and then

Bn+1 = Bn ∪ {d | σ((∃xψ, s,+)) = d},

where range(s) ⊆ Bn and ∃xψ ∈ Subf(ϕ). Let B be the substructure of A induced by the set⋃
n∈N

Bn. B is clearly countable.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 18 / 23

reijo.jaakkola@tuni.fi

Some model theory

Downward Löwenheim–Skolem Theorem

Theorem

Let ϕ be a sentence of BndSCL or SCL and let A be a model of ϕ. Then there exists a countable
substructure B of A such that B |= ϕ.

Proof.

Proof for SCL. Fix a (positional) winning strategy σ for the Verifier in the game G∞(A, ϕ). We want
to construct a countable model B so that Eloise has a winning strategy also in the game G∞(B, ϕ).
Pick an arbitrary b ∈ A. We define a sequence of sets (Bn)n∈N inductively such that, firstly B0 = {b},
and then

Bn+1 = Bn ∪ {d | σ((∃xψ, s,+)) = d},

where range(s) ⊆ Bn and ∃xψ ∈ Subf(ϕ). Let B be the substructure of A induced by the set⋃
n∈N

Bn. B is clearly countable.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 18 / 23

reijo.jaakkola@tuni.fi

Some model theory

Failure of Craig interpolation

Craig interpolation property (CIP): if ϕ |= ψ, then there exists a third sentence θ such that
ϕ |= θ |= ψ and θ contains only those relation symbols that occur in both of the sentences ϕ
and ψ.

Neither BndSCL nor SCL has CIP.

Lemma

For every sentence ϕ of SCL[∅] there exists a finite structure A of even size and a finite structure B
of odd size such that

A |= ϕ ⇒ B |= ϕ

Proof.

Follows from the fact that over finite models SCL is contained in Lω
ω1ω .

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 19 / 23

reijo.jaakkola@tuni.fi

Some model theory

Failure of Craig interpolation

Craig interpolation property (CIP): if ϕ |= ψ, then there exists a third sentence θ such that
ϕ |= θ |= ψ and θ contains only those relation symbols that occur in both of the sentences ϕ
and ψ.

Neither BndSCL nor SCL has CIP.

Lemma

For every sentence ϕ of SCL[∅] there exists a finite structure A of even size and a finite structure B
of odd size such that

A |= ϕ ⇒ B |= ϕ

Proof.

Follows from the fact that over finite models SCL is contained in Lω
ω1ω .

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 19 / 23

reijo.jaakkola@tuni.fi

Some model theory

Failure of Craig interpolation

Craig interpolation property (CIP): if ϕ |= ψ, then there exists a third sentence θ such that
ϕ |= θ |= ψ and θ contains only those relation symbols that occur in both of the sentences ϕ
and ψ.

Neither BndSCL nor SCL has CIP.

Lemma

For every sentence ϕ of SCL[∅] there exists a finite structure A of even size and a finite structure B
of odd size such that

A |= ϕ ⇒ B |= ϕ

Proof.

Follows from the fact that over finite models SCL is contained in Lω
ω1ω .

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 19 / 23

reijo.jaakkola@tuni.fi

Some model theory

Failure of Craig interpolation

Craig interpolation property (CIP): if ϕ |= ψ, then there exists a third sentence θ such that
ϕ |= θ |= ψ and θ contains only those relation symbols that occur in both of the sentences ϕ
and ψ.

Neither BndSCL nor SCL has CIP.

Lemma

For every sentence ϕ of SCL[∅] there exists a finite structure A of even size and a finite structure B
of odd size such that

A |= ϕ ⇒ B |= ϕ

Proof.

Follows from the fact that over finite models SCL is contained in Lω
ω1ω .

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 19 / 23

reijo.jaakkola@tuni.fi

Some model theory

Failure of Craig interpolation

Theorem

SCL does not have CIP.

Proof.

Given a binary relation “<”, there is a SCL sentence ϕ which states that

1 < is a (total) linear order

2 the distance between the smallest and the largest element is finite.

In particular, ϕ projectively defines the class of finite models.

Fix two binary relation symbols E1 and E2. It is easy to write sentences ψ1 ∈ FO[{E1}] and
ψ2 ∈ FO[{E2}] such that

1 ψ1 states that E1 is an equivalence relation where each equivalence class has cardinality two

2 ψ2 states that E2 is an equivalence relation with one class of cardinality one while each other
class has cardinality two.

Clearly ϕ ∧ ψ1 |= ¬ψ2. However, any interpolant between these sentences needs to distinguish each
finite structure of even size from every finite structure of odd size.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 20 / 23

reijo.jaakkola@tuni.fi

Some model theory

Failure of Craig interpolation

Theorem

SCL does not have CIP.

Proof.

Given a binary relation “<”, there is a SCL sentence ϕ which states that

1 < is a (total) linear order

2 the distance between the smallest and the largest element is finite.

In particular, ϕ projectively defines the class of finite models.

Fix two binary relation symbols E1 and E2. It is easy to write sentences ψ1 ∈ FO[{E1}] and
ψ2 ∈ FO[{E2}] such that

1 ψ1 states that E1 is an equivalence relation where each equivalence class has cardinality two

2 ψ2 states that E2 is an equivalence relation with one class of cardinality one while each other
class has cardinality two.

Clearly ϕ ∧ ψ1 |= ¬ψ2. However, any interpolant between these sentences needs to distinguish each
finite structure of even size from every finite structure of odd size.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 20 / 23

reijo.jaakkola@tuni.fi

Some model theory

Failure of Craig interpolation

Theorem

SCL does not have CIP.

Proof.

Given a binary relation “<”, there is a SCL sentence ϕ which states that

1 < is a (total) linear order

2 the distance between the smallest and the largest element is finite.

In particular, ϕ projectively defines the class of finite models.

Fix two binary relation symbols E1 and E2. It is easy to write sentences ψ1 ∈ FO[{E1}] and
ψ2 ∈ FO[{E2}] such that

1 ψ1 states that E1 is an equivalence relation where each equivalence class has cardinality two

2 ψ2 states that E2 is an equivalence relation with one class of cardinality one while each other
class has cardinality two.

Clearly ϕ ∧ ψ1 |= ¬ψ2. However, any interpolant between these sentences needs to distinguish each
finite structure of even size from every finite structure of odd size.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 20 / 23

reijo.jaakkola@tuni.fi

Some model theory

Failure of Craig interpolation

Theorem

SCL does not have CIP.

Proof.

Given a binary relation “<”, there is a SCL sentence ϕ which states that

1 < is a (total) linear order

2 the distance between the smallest and the largest element is finite.

In particular, ϕ projectively defines the class of finite models.

Fix two binary relation symbols E1 and E2. It is easy to write sentences ψ1 ∈ FO[{E1}] and
ψ2 ∈ FO[{E2}] such that

1 ψ1 states that E1 is an equivalence relation where each equivalence class has cardinality two

2 ψ2 states that E2 is an equivalence relation with one class of cardinality one while each other
class has cardinality two.

Clearly ϕ ∧ ψ1 |= ¬ψ2. However, any interpolant between these sentences needs to distinguish each
finite structure of even size from every finite structure of odd size.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 20 / 23

reijo.jaakkola@tuni.fi

Some model theory

Failure of Craig interpolation

Theorem

SCL does not have CIP.

Proof.

Given a binary relation “<”, there is a SCL sentence ϕ which states that

1 < is a (total) linear order

2 the distance between the smallest and the largest element is finite.

In particular, ϕ projectively defines the class of finite models.

Fix two binary relation symbols E1 and E2. It is easy to write sentences ψ1 ∈ FO[{E1}] and
ψ2 ∈ FO[{E2}] such that

1 ψ1 states that E1 is an equivalence relation where each equivalence class has cardinality two

2 ψ2 states that E2 is an equivalence relation with one class of cardinality one while each other
class has cardinality two.

Clearly ϕ ∧ ψ1 |= ¬ψ2. However, any interpolant between these sentences needs to distinguish each
finite structure of even size from every finite structure of odd size.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 20 / 23

reijo.jaakkola@tuni.fi

Some model theory

Failure of Craig interpolation

Theorem

SCL does not have CIP.

Proof.

Given a binary relation “<”, there is a SCL sentence ϕ which states that

1 < is a (total) linear order

2 the distance between the smallest and the largest element is finite.

In particular, ϕ projectively defines the class of finite models.

Fix two binary relation symbols E1 and E2. It is easy to write sentences ψ1 ∈ FO[{E1}] and
ψ2 ∈ FO[{E2}] such that

1 ψ1 states that E1 is an equivalence relation where each equivalence class has cardinality two

2 ψ2 states that E2 is an equivalence relation with one class of cardinality one while each other
class has cardinality two.

Clearly ϕ ∧ ψ1 |= ¬ψ2. However, any interpolant between these sentences needs to distinguish each
finite structure of even size from every finite structure of odd size.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 20 / 23

reijo.jaakkola@tuni.fi

Some model theory

Everywhere determined sentences

Theorem

Let ϕ be a sentence of SCL. If ϕ is determined everywhere, then there exists n ∈ N such that ϕ is
equivalent with Φn

ϕ. In particular, any sentence of SCL which expresses a property that is not
FO-definable is undetermined in some model.

Proof.

If ϕ is determined everywhere, then ϕ ∨ ¬ϕ is valid. This in turn implies that Φn
ϕ∨¬ϕ = Φn

ϕ ∨ Φn
¬ϕ is

also valid, for some n ∈ N. We claim that ϕ is equivalent with Φn
ϕ. First, we have that Φn

ϕ |= ϕ.
Secondly, since Φn

ϕ ∨ Φn
¬ϕ is valid, we have that ¬Φn

ϕ |= Φn
¬ϕ |= ¬ϕ.

If we know that ϕ is determined everywhere, then we can effectively find an approximant Φn
ϕ

which is equivalent with ϕ.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 21 / 23

reijo.jaakkola@tuni.fi

Some model theory

Everywhere determined sentences

Theorem

Let ϕ be a sentence of SCL. If ϕ is determined everywhere, then there exists n ∈ N such that ϕ is
equivalent with Φn

ϕ. In particular, any sentence of SCL which expresses a property that is not
FO-definable is undetermined in some model.

Proof.

If ϕ is determined everywhere, then ϕ ∨ ¬ϕ is valid. This in turn implies that Φn
ϕ∨¬ϕ = Φn

ϕ ∨ Φn
¬ϕ is

also valid, for some n ∈ N. We claim that ϕ is equivalent with Φn
ϕ. First, we have that Φn

ϕ |= ϕ.
Secondly, since Φn

ϕ ∨ Φn
¬ϕ is valid, we have that ¬Φn

ϕ |= Φn
¬ϕ |= ¬ϕ.

If we know that ϕ is determined everywhere, then we can effectively find an approximant Φn
ϕ

which is equivalent with ϕ.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 21 / 23

reijo.jaakkola@tuni.fi

Some model theory

Everywhere determined sentences

Theorem

Let ϕ be a sentence of SCL. If ϕ is determined everywhere, then there exists n ∈ N such that ϕ is
equivalent with Φn

ϕ. In particular, any sentence of SCL which expresses a property that is not
FO-definable is undetermined in some model.

Proof.

If ϕ is determined everywhere, then ϕ ∨ ¬ϕ is valid. This in turn implies that Φn
ϕ∨¬ϕ = Φn

ϕ ∨ Φn
¬ϕ is

also valid, for some n ∈ N. We claim that ϕ is equivalent with Φn
ϕ. First, we have that Φn

ϕ |= ϕ.
Secondly, since Φn

ϕ ∨ Φn
¬ϕ is valid, we have that ¬Φn

ϕ |= Φn
¬ϕ |= ¬ϕ.

If we know that ϕ is determined everywhere, then we can effectively find an approximant Φn
ϕ

which is equivalent with ϕ.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 21 / 23

reijo.jaakkola@tuni.fi

Some model theory

Everywhere determined sentences: the finite case

Theorem

Restrict attention to finite linearly ordered structures.

For every sentence ϕ of SCL there exists a
sentence ϕ′ of SCL such that

1 for every structure A we have that

A |= ϕ ⇔ A |= ϕ′

and

2 ϕ′ is determined in every structure.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 22 / 23

reijo.jaakkola@tuni.fi

Some model theory

Everywhere determined sentences: the finite case

Theorem

Restrict attention to finite linearly ordered structures. For every sentence ϕ of SCL there exists a
sentence ϕ′ of SCL such that

1 for every structure A we have that

A |= ϕ ⇔ A |= ϕ′

and

2 ϕ′ is determined in every structure.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 22 / 23

reijo.jaakkola@tuni.fi

Some model theory

Everywhere determined sentences: the finite case

Theorem

Restrict attention to finite linearly ordered structures. For every sentence ϕ of SCL there exists a
sentence ϕ′ of SCL such that

1 for every structure A we have that

A |= ϕ ⇔ A |= ϕ′

and

2 ϕ′ is determined in every structure.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 22 / 23

reijo.jaakkola@tuni.fi

Some model theory

Everywhere determined sentences: the finite case

Theorem

Restrict attention to finite linearly ordered structures. For every sentence ϕ of SCL there exists a
sentence ϕ′ of SCL such that

1 for every structure A we have that

A |= ϕ ⇔ A |= ϕ′

and

2 ϕ′ is determined in every structure.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 22 / 23

reijo.jaakkola@tuni.fi

Open problems

Main open problems

1 Are the satisfiability problems of BndSCL2 and SCL2 decidable?

2 Is BndSCL contained in SCL?

Thanks! :-)

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 23 / 23

reijo.jaakkola@tuni.fi

Open problems

Main open problems

1 Are the satisfiability problems of BndSCL2 and SCL2 decidable?

2 Is BndSCL contained in SCL?

Thanks! :-)

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University) First-order logic with game-theoretic recursion April 20, 2023 23 / 23

reijo.jaakkola@tuni.fi

	Background
	Syntax and semantics
	Validity problems of SCL and BndSCL
	Some model theory
	Open problems

