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o CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of
recursively enumerable languages. More precisely, for every Turing machine M we can find a
sentence ¢y of CL s.t. for every finite (relational) structure 21 the following conditions hold.

Q@ 2 = ¢u iff M accepts 2A
Q 2A = —¢um iff M rejects A
@ ow is indeterminate on 2l iff the computation of M on 2( diverges
Conversely, if ¢ is a sentence of CL, then Mod(¢) is a recursively enumerable set of models.

o CL extends standard first-order logic FO with two natural features.

@ The ability to modify the underlying model: adding new elements to the domain of the model,
new tuples to relations, new relations etc.

@ The ability to use recursion (looping) via self-reference.
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@ Logics with different kinds of recursive looping capacities have been widely studied in the
context of finite model theory.
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@ Logics with different kinds of recursive looping capacities have been widely studied in the
context of finite model theory.

@ FO[TC]: extension of FO that can compute the transitive closure of a binary relation.
VxVy(—x =y — [TCx,, Exy]xy)

Captures NL over ordered finite structures.

@ LFP: extension of FO with the least fixed point operator.
VxVy(—x =y — [LFPy,, x(Exy V 3z(Xxz A Ezy))]xy)
Captures P over ordered finite structures.
o In CL the recursion is implemented via self-reference (or go-to statements).
VxVy(-x =y — L(Exy V3z(Exz A 3x(x = z A C1))))

Formulas are interpretated using game-theoretical semantics. We call the extension of FO with
this type of recursion SCL (static computational logic).
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Overview of the rest of the talk

@ Syntax & Semantics of SCL.
@ Validity problem of SCL.

@ Some results on the model theory of SCL.
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Syntax and semantics

Syntax of SCL

Fix a countable set LBS = {L, | n € N} of /abel symbols.
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Syntax of SCL

Fix a countable set LBS = {L, | n € N} of label symbols. For reach relational vocabulary 7 the set of
formulas SCL[7] is defined by the following grammar:

pu=x=y|RX)| C|-d|¢Ad|3x¢] L,

where R € 7 and L € LBS.
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Game-theoretical semantics (GTS) for SCL

o We associate to each 7-structure 2, assignment s and a formula ¢ of SCL[7] a two-player game
Goo (2, s, $), which is played by Verifier and Falsifier.
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Game-theoretical semantics (GTS) for SCL

o We associate to each 7-structure 2, assignment s and a formula ¢ of SCL[7] a two-player game
Goo (2, s, ¢), which is played by Verifier and Falsifier. We then define that

A, s = ¢ < Verifier has a winning strategy in the game Goo (2, s, ¢).
We call G the unbounded evaluation game.

o Positions of the game are triples (r, v, #), where r is the current assignment, 1 is a subformula
of ¢ and # € {—,+}. Initial position is just (s, ¢, +).

o Rules for first-order connectives and atomic formulas are standard. Some examples.

o Next position from (r, =1, +) is (r, %, —) and from (r, =), —) the next position is (r, ), +).

o If the position is (r, ar, +), where o is an atomic formula, then Verifier wins if 2, r = « and
otherwise Falsifier wins.
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o Next position from (r, C,#) is (r, Rf(CL), #), where Rf(C,) is the reference formula of C;.
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o Next position from (r, Cp,#) is (r, Rf(CL), #), where Rf(C,) is the reference formula of C,. It
is defined as the subformula occurrence Li) such that there is a directed path from L to C; in
the syntax tree of ¢, and L does not occur strictly between Ly and C; on that path.
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Syntax and semantics

Bounded SCL

@ Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game G
with the bounded evaluation game G,,,.
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@ Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game G
with the bounded evaluation game G,,,.

o Given a triple (2, s, ¢), the game G, (2, s, ¢) proceeds as follows.
@ Falsifier chooses a natural number n’ € N.
@ Verifier chooses a natural number n > n’.

@ Players play the game n-bounded evaluation game G,(2, s, ¢).

@ The n-bounded evaluation game G, works like Goc with the exception that looping atoms can
be visited at most n times.
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Syntax and semantics

Bounded SCL

@ Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game G

with the bounded evaluation game G,,,.

o Given a triple (2, s, ¢), the game G, (2, s, ¢) proceeds as follows.

@ Falsifier chooses a natural number n’ € N.
@ Verifier chooses a natural number n > n’.
@ Players play the game n-bounded evaluation game G,(2, s, ¢).
@ The n-bounded evaluation game G, works like Goc with the exception that looping atoms can

be visited at most n times. If the players reach a looping atom after they have visited looping
atoms n times, the game stops and neither player wins the game.
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BndSCL vs SCL

Consider the formula ¢(x) := L(P(x) V Vy(R(x,y) — 3x(x = y A C.))). Under unbounded semantics,

¢ is true at the “root” of the above structure, while under bounded semantics it is not true.
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Approximants

Defi
Let ¢ be a formula of SCL.

on

First-order logic with game-theoretic recursion April 20, 2023 10/23


reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Approximants

Let ¢ be a formula of SCL. The nth unfolding of ¢, denoted by W, is defined inductively as follows.
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Let ¢ be a formula of SCL. The nth unfolding of ¢, denoted by W, is defined inductively as follows.

@ The zeroeth unfolding \Il% of ¢ is defined to be the formula ¢.

Q@ The (k + 1)st unfolding \ugjl is the formula obtained from the kth unfolding W% by replacing
every looping atom C; in \Il‘;> by the corresponding reference formula Rf(C.) in \U’;.
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Approximants

Definition

Let ¢ be a formula of SCL. The nth unfolding of ¢, denoted by W, is defined inductively as follows.
@ The zeroeth unfolding \Il% of ¢ is defined to be the formula ¢.

Q@ The (k + 1)st unfolding \ugjl is the formula obtained from the kth unfolding W% by replacing
every looping atom C; in \Ils> by the corresponding reference formula Rf(C.) in \U’;.

M

Example

Consider the formula ¢ := IxLIy(R(x,y) A Cr).

4
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Let ¢ be a formula of SCL.
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Validity problems of SCL and BndSCL

Approximants

Let ¢ be a formula of SCL. We define the nth approximant (or n-approximant) <I>Zs of ¢ to be the
FO-formula obtained from the nth unfolding \Ug by removing all the label symbols and replacing each

occurrence of each looping atom by
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Validity problems of SCL and BndSCL

Approximants

Let ¢ be a formula of SCL. We define the nth approximant (or n-approximant) <I>Zs of ¢ to be the
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Approximants

Definition

Let ¢ be a formula of SCL. We define the nth approximant (or n-approximant) <I>Zs of ¢ to be the
FO-formula obtained from the nth unfolding \Ug by removing all the label symbols and replacing each
occurrence of each looping atom by

@ L if the occurrence of the atom is positive in \Ilgs,

@ T if the occurrence is negative in \Il;.

Recall the formula ¢ := 3IxL3y(R(x,y) A Cp).

.
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Definition

Let ¢ be a formula of SCL. We define the nth approximant (or n-approximant) <I>Zs of ¢ to be the
FO-formula obtained from the nth unfolding \Ug by removing all the label symbols and replacing each
occurrence of each looping atom by

@ L if the occurrence of the atom is positive in \Ilgs,

@ T if the occurrence is negative in \Il;.

Recall the formula ¢ := IxL3y(R(x,y) A C.). Since

.

W2 = 3xL3y(R(x,y) A L3y(R(x,y) A L3y(R(x,y) A C1)))

M
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Approximants

Definition

Let ¢ be a formula of SCL. We define the nth approximant (or n-approximant) <I>Zs of ¢ to be the
FO-formula obtained from the nth unfolding \Ug by removing all the label symbols and replacing each
occurrence of each looping atom by

@ L if the occurrence of the atom is positive in \Ilgs,

@ T if the occurrence is negative in \Il;.

.

Example

Recall the formula ¢ := IxL3y(R(x,y) A C.). Since
W2 = 3xL3y(R(x,y) A L3y(R(x,y) A L3y(R(x,y) A C1)))

we have that

% == AxFy(R(x,y) A y(R(x,y) ATy (R(x,y) A L))

M
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Validity problems of SCL and BndSCL

BndSCL as a fragment of £

wiw

Lemma

Let ¢ be a formula of SCL.
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Lemma

Let ¢ be a formula of SCL. Then for every structure 20 and assignment s we have that

Verifier has a winning strategy in Gn(2L, s, $) < 2, s = &}
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Let ¢ be a formula of BndSCL.
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BndSCL as a fragment of £

wiw

Lemma

Let ¢ be a formula of SCL. Then for every structure 20 and assignment s we have that

Verifier has a winning strategy in Gn(2L, s, $) < 2, s = &}

Theorem

Let ¢ be a formula of BndSCL. Then for every structure 2 and assignment s we have that

Verifier has a winning strategy in G, (2,s,¢) < A, s = \/ %

neN
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BndSCL as a fragment of £

wiw

Lemma

Let ¢ be a formula of SCL. Then for every structure 20 and assignment s we have that

Verifier has a winning strategy in Gn(2L, s, $) < 2, s = &}

Theorem

Let ¢ be a formula of BndSCL. Then for every structure 2 and assignment s we have that

Verifier has a winning strategy in G, (2,s,¢) < A, s = \/ %

neN

In particular, BndSCL < L& .
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Validity problems of SCL and BndSCL

SCL # BndSCL

Example

Connectivity of a graph is not definable in BndSCL. For example, consider the following graphs

B o O o o 0 o o o o o o

By ——0—0—0 00 0 0 0 0 0 ——0—0 000 0 0 0 0 0

These graphs are elementary equivalent, which implies that for every BndSCL sentence ¢ we have that

if 81 = ¢, then B, = ¢.

4
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B o O o o 0 o o o o o o

By ——0—0—0 00 0 0 0 0 0 ——0—0 000 0 0 0 0 0

These graphs are elementary equivalent, which implies that for every BndSCL sentence ¢ we have that

if 81 = ¢, then B, = ¢.

4

)

Problem

Is BndSCL contained in SCL?
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Valid sentences of BndSCL are RE

Let ¢ be a sentence of BndSCL. Now ¢ is valid if and only if CDQ, is valid, for some n € N.
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Valid sentences of BndSCL are RE

Let ¢ be a sentence of BndSCL. Now ¢ is valid if and only if d)ﬂ) is valid, for some n € N. J

(<) If Verifier has a winning strategy in G,(2L, @), then they have a winning strategy in G, (2, ¢).

(=) Suppose that —®7 is satisfiable, for every n € N. Since —®y = ﬁ<I>"' for every n’ < n, using
compactness we get that {—|¢ | n € N} is satisfiable. Since ¢ is truth equwalent with \/ _— d>’
there must exists a model 2L such that Verifier does not have a winning strategy in G, (2, ¢). O
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(<) If Verifier has a winning strategy in G,(2L, @), then they have a winning strategy in Goo (2, ¢).

(=) If there exists for every n € N a structure 2(, such that Verifier does not have a winning strategy
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Verifier does not have a winning strategy in Goo (2, ¢). O

First-order logic with game-theoretic recursion April 20, 2023 15/23


reijo.jaakkola@tuni.fi

Valid sentences of SCL are RE

Let ¢ be a sentence of SCL. Now ¢ is valid if and only if <I>’q’> is valid, for some n € N. J

Proof.

(<) If Verifier has a winning strategy in G,(2L, @), then they have a winning strategy in Goo (2, ¢).

(=) If there exists for every n € N a structure 2(, such that Verifier does not have a winning strategy
in G,(2An, @), then one can use compactness theorem for FO to construct a structure 2 such that
Verifier does not have a winning strategy in Goo (2, ¢). O

Corollary

Valid sentences of BndSCL and SCL coincide.
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Validity problems of SCL and BndSCL

Weakly complete axiomatization for SCL

@ In our work we also developed a natural deduction style proof system which is weakly complete:
if X is a set of FO-sentences and ¢ is a sentence of SCL, then X |= ¢ iff £ - ¢ in our system.
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Weakly complete axiomatization for SCL

@ In our work we also developed a natural deduction style proof system which is weakly complete:
if X is a set of FO-sentences and ¢ is a sentence of SCL, then X |= ¢ iff £ - ¢ in our system.

A

| Lap]

m l { LDual-Intra)

] 1 (LDumemy-lntro Elim)

Lap|

@lCL)
/O]

(€7, Free-Elim)

I (L, Rename)

@ The main idea is to show that for each formula ¢ we have that <I>’(;> .
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Weakly complete axiomatization for SCL

@ In our work we also developed a natural deduction style proof system which is weakly complete:
if X is a set of FO-sentences and ¢ is a sentence of SCL, then X |= ¢ iff £ - ¢ in our system.

| Lap]
m l (LDual-Intro)

o[ L'${{Cr/CL}}

I (L, Rename)

@ The main idea is to show that for each formula ¢ we have that <I>’<;> .

@ As an important step of our proof we show that our system can prove that every SCL sentence
is equivalent to a sentence in strong negation normal form: negation only occurs in front of
atomic FO-formulas.

First-order logic with game-theoretic recursion April 20, 2023 16/23


reijo.jaakkola@tuni.fi

Validity problems of SCL and BndSCL

Validity problem for SCL?

For every sentence ¢ of SCLK there exists a sentence W of ESOX such that for every structure 1 we
have the following equivalence

Verifier does not have a winning strategy in Goo (2, ¢) & A E W
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Validity problems of SCL and BndSCL

Validity problem for SCL?

Theorem

For every sentence ¢ of SCLK there exists a sentence W of ESOX such that for every structure 1 we
have the following equivalence

Verifier does not have a winning strategy in Goo (2, ¢) & A E W

Furthermore, W can be computed from ¢ in polynomial time

A

Corollary

@ Every sentence of SCL¥ can be translated in polynomial time to an equivalent sentence of YSOX.

M
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have the following equivalence
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A

Corollary

@ Every sentence of SCL¥ can be translated in polynomial time to an equivalent sentence of YSOX.

@ The validity problem for SCL? is cONEXPTIME-complete.

M
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Validity problem for SCL?

Theorem

For every sentence ¢ of SCLK there exists a sentence W of ESOX such that for every structure 1 we
have the following equivalence

Verifier does not have a winning strategy in Goo (2, ¢) & A E W

Furthermore, W can be computed from ¢ in polynomial time )

Corollary

@ Every sentence of SCL¥ can be translated in polynomial time to an equivalent sentence of YSOX.

@ The validity problem for SCL? is cONEXPTIME-complete.

M

Problem

Are the satisfiability problems of BndSCL? and SCL? decidable? BndSCL? has the finite model
property and SCL? does not have it.

.
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Downward Lowenheim—Skolem Theorem

Let ¢ be a sentence of BndSCL or SCL and let 2l be a model of ¢.
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Let ¢ be a sentence of BndSCL or SCL and let 21 be a model of ¢. Then there exists a countable
substructure B of 2 such that B |= ¢.
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Theorem

Let ¢ be a sentence of BndSCL or SCL and let 2L be a model of ¢. Then there exists a countable
substructure B of 2 such that B |= ¢.

e

Proof for SCL.

A
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Downward Lowenheim—Skolem Theorem

Theorem

Let ¢ be a sentence of BndSCL or SCL and let 2L be a model of ¢. Then there exists a countable
substructure B of 2 such that B |= ¢.

e

Proof.

Proof for SCL. Fix a (positional) winning strategy o for the Verifier in the game Goo (2, ¢). We want
to construct a countable model 9B so that Eloise has a winning strategy also in the game Goo (B, ¢).

A
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Downward Lowenheim—Skolem Theorem

Theorem

Let ¢ be a sentence of BndSCL or SCL and let 2L be a model of ¢. Then there exists a countable
substructure B of 2 such that B |= ¢.

e

Proof.

Proof for SCL. Fix a (positional) winning strategy o for the Verifier in the game Goo (2, ¢). We want
to construct a countable model 9B so that Eloise has a winning strategy also in the game Goo (B, ¢).
Pick an arbitrary b € A. We define a sequence of sets (B,)nen inductively such that, firstly By = {b},
and then

Bn1 = B, U{d | o((3x, s, +)) = d},
where range(s) C B, and Jx3 € Subf(¢). Let B be the substructure of  induced by the set

- B,. ‘B is clearly countable. O

A
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Some model theor,

Failure of Craig interpolation

o Craig interpolation property (CIP): if ¢ |= 1, then there exists a third sentence 6 such that
¢ = 0 = v and 0 contains only those relation symbols that occur in both of the sentences ¢
and .
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Failure of Craig interpolation

o Craig interpolation property (CIP): if ¢ |= 1, then there exists a third sentence 6 such that
¢ = 0 = v and 0 contains only those relation symbols that occur in both of the sentences ¢
and .

@ Neither BndSCL nor SCL has CIP.

Lemma

For every sentence ¢ of SCL[D] there exists a finite structure 2| of even size and a finite structure B
of odd size such that

Ak d=BEo
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Failure of Craig interpolation

o Craig interpolation property (CIP): if ¢ |= 1, then there exists a third sentence 6 such that
¢ = 0 = v and 0 contains only those relation symbols that occur in both of the sentences ¢
and .

@ Neither BndSCL nor SCL has CIP.

Lemma

For every sentence ¢ of SCL[D] there exists a finite structure 2| of even size and a finite structure B
of odd size such that

A= B o
Follows from the fact that over finite models SCL is contained in £ ,. DJ
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Given a binary relation “<", there is a SCL sentence ¢ which states that

Q@ < is a (total) linear order
@ the distance between the smallest and the largest element is finite.

In particular, ¢ projectively defines the class of finite models.
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Some model theor,

Failure of Craig interpolation

SCL does not have CIP.

Proof.

Given a binary relation “<", there is a SCL sentence ¢ which states that
Q@ < is a (total) linear order
@ the distance between the smallest and the largest element is finite.
In particular, ¢ projectively defines the class of finite models.

Fix two binary relation symbols E; and E;. It is easy to write sentences ¢; € FO[{E:}] and
1» € FO[{E>}] such that
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In particular, ¢ projectively defines the class of finite models.
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1» € FO[{E>}] such that

@ 1 states that E; is an equivalence relation where each equivalence class has cardinality two
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Failure of Craig interpolation

SCL does not have CIP.

Given a binary relation “<", there is a SCL sentence ¢ which states that

Q@ < is a (total) linear order
@ the distance between the smallest and the largest element is finite.
In particular, ¢ projectively defines the class of finite models.

Fix two binary relation symbols E; and E;. It is easy to write sentences ¢; € FO[{E:}] and
1» € FO[{E>}] such that

@ 1 states that E; is an equivalence relation where each equivalence class has cardinality two

@ 1, states that E; is an equivalence relation with one class of cardinality one while each other
class has cardinality two.
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Some model theor,

Failure of Craig interpolation

SCL does not have CIP.

Given a binary relation “<", there is a SCL sentence ¢ which states that
Q@ < is a (total) linear order
@ the distance between the smallest and the largest element is finite.
In particular, ¢ projectively defines the class of finite models.

Fix two binary relation symbols E; and E;. It is easy to write sentences ¢; € FO[{E:}] and
1» € FO[{E>}] such that

@ 1 states that E; is an equivalence relation where each equivalence class has cardinality two

@ 1, states that E; is an equivalence relation with one class of cardinality one while each other
class has cardinality two.

Clearly ¢ A 1 |= —b2. However, any interpolant between these sentences needs to distinguish each
finite structure of even size from every finite structure of odd size. O

4
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Everywhere determined sentences

Theorem

Let ¢ be a sentence of SCL. If ¢ is determined everywhere, then there exists n € N such that ¢ is

equivalent with ®" . In particular, any sentence of SCL which expresses a property that is not
FO-definable is undetermined in some model.
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Everywhere determined sentences

Theorem

Let ¢ be a sentence of SCL. If ¢ is determined everywhere, then there exists n € N such that ¢ is
equivalent with ®" . In particular, any sentence of SCL which expresses a property that is not
FO-definable is undetermined in some model.

A

Proof.

If ¢ is determined everywhere, then ¢V —¢ is valid. This in turn implies that ¢;Vﬁ¢ = <I>; \Y <D’L¢ is

also valid, for some n € N. We claim that ¢ is equivalent with ¢§>. First, we have that ¢;L E ¢.

Secondly, since CDQ) vV ¢i¢ is valid, we have that ﬁCI)g) = ¢1¢ E —o. O

g

First-order logic with game-theoretic recursion April 20, 2023 21/23


reijo.jaakkola@tuni.fi

Everywhere determined sentences

Theorem

Let ¢ be a sentence of SCL. If ¢ is determined everywhere, then there exists n € N such that ¢ is
equivalent with ®" . In particular, any sentence of SCL which expresses a property that is not
FO-definable is undetermined in some model.

A

Proof.

PV o

also valid, for some n € N. We claim that ¢ is equivalent with ¢§>. First, we have that ¢;L E ¢.

Secondly, since CDQ) vV ¢i¢ is valid, we have that ﬁCI)g) = ¢1¢ E —o. O

If ¢ is determined everywhere, then ¢ V —¢ is valid. This in turn implies that ®”, = <I>g \Y <D’L¢ is

g

o If we know that ¢ is determined everywhere, then we can effectively find an approximant tbg)
which is equivalent with ¢.
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Everywhere determined sentences: the finite case

Restrict attention to finite linearly ordered structures.
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Theorem

Restrict attention to finite linearly ordered structures. For every sentence ¢ of SCL there exists a
sentence ¢’ of SCL such that
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sentence ¢’ of SCL such that

Q@ for every structure 2 we have that

AL g oA
and
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Everywhere determined sentences: the finite case

Theorem

Restrict attention to finite linearly ordered structures. For every sentence ¢ of SCL there exists a
sentence ¢’ of SCL such that

Q@ for every structure 2 we have that

AL g oA
and

Q@ ¢’ is determined in every structure.
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Main open problems

@ Avre the satisfiability problems of BndSCL2 and SCL? decidable?
@ Is BndSCL contained in SCL?
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Main open problems

@ Avre the satisfiability problems of BndSCL2 and SCL? decidable?
@ Is BndSCL contained in SCL?

Thanks! :-)
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