First-order logic with game-theoretic recursion

Reijo Jaakkola reijo.jaakkola@tuni.fi

Tampere University

April 20, 2023

◆□ → ◆□ → ◆臣 → ◆臣 → ○

3

Computational logic CL

• CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of recursively enumerable languages.

3

◆□ → ◆□ → ◆臣 → ◆臣 → ○

Computational logic CL

• CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of recursively enumerable languages. More precisely, for every Turing machine M we can find a sentence ϕ_M of CL s.t. for every finite (relational) structure \mathfrak{A} the following conditions hold.

3

Computational logic CL

• CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of recursively enumerable languages. More precisely, for every Turing machine M we can find a sentence ϕ_M of CL s.t. for every finite (relational) structure \mathfrak{A} the following conditions hold.

• $\mathfrak{A} \models \phi_M$ iff *M* accepts \mathfrak{A}

3

Computational logic CL

- CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of recursively enumerable languages. More precisely, for every Turing machine M we can find a sentence ϕ_M of CL s.t. for every finite (relational) structure \mathfrak{A} the following conditions hold.
 - $\mathfrak{A} \models \phi_M$ iff M accepts \mathfrak{A}
 - $\ \, \mathfrak{A} \models \neg \phi_M \text{ iff } M \text{ rejects } \mathfrak{A}$

3

Computational logic CL

- CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of recursively enumerable languages. More precisely, for every Turing machine M we can find a sentence ϕ_M of CL s.t. for every finite (relational) structure \mathfrak{A} the following conditions hold.
 - $\mathfrak{A} \models \phi_M$ iff M accepts \mathfrak{A}
 - $\ \, \mathfrak{A} \models \neg \phi_M \text{ iff } M \text{ rejects } \mathfrak{A}$
 - ϕ_M is indeterminate on \mathfrak{A} iff the computation of M on \mathfrak{A} diverges

Computational logic CL

- CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of recursively enumerable languages. More precisely, for every Turing machine M we can find a sentence ϕ_M of CL s.t. for every finite (relational) structure \mathfrak{A} the following conditions hold.
 - $\mathfrak{A} \models \phi_M$ iff M accepts \mathfrak{A}
 - $\ \, \mathfrak{A} \models \neg \phi_M \text{ iff } M \text{ rejects } \mathfrak{A}$
 - ϕ_M is indeterminate on \mathfrak{A} iff the computation of M on \mathfrak{A} diverges

Conversely, if ϕ is a sentence of CL, then $Mod(\phi)$ is a recursively enumerable set of models.

イロン 不同 とくほど 不良 とう

Computational logic CL

- CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of recursively enumerable languages. More precisely, for every Turing machine M we can find a sentence ϕ_M of CL s.t. for every finite (relational) structure \mathfrak{A} the following conditions hold.
 - $\ \, \mathfrak{A} \models \phi_M \text{ iff } M \text{ accepts } \mathfrak{A}$
 - $\ \, \mathfrak{A} \models \neg \phi_M \text{ iff } M \text{ rejects } \mathfrak{A}$
 - ϕ_M is indeterminate on \mathfrak{A} iff the computation of M on \mathfrak{A} diverges

Conversely, if ϕ is a sentence of CL, then $Mod(\phi)$ is a recursively enumerable set of models.

• CL extends standard first-order logic FO with two natural features.

Computational logic CL

- CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of recursively enumerable languages. More precisely, for every Turing machine M we can find a sentence ϕ_M of CL s.t. for every finite (relational) structure \mathfrak{A} the following conditions hold.
 - $\ \, \mathfrak{A} \models \phi_M \text{ iff } M \text{ accepts } \mathfrak{A}$
 - $\ \, \mathfrak{A} \models \neg \phi_M \text{ iff } M \text{ rejects } \mathfrak{A}$
 - ϕ_M is indeterminate on \mathfrak{A} iff the computation of M on \mathfrak{A} diverges

Conversely, if ϕ is a sentence of CL, then $Mod(\phi)$ is a recursively enumerable set of models.

- CL extends standard first-order logic FO with two natural features.
 - The ability to modify the underlying model: adding new elements to the domain of the model, new tuples to relations, new relations etc.

・ロト ・回ト ・ヨト ・ヨト

Computational logic CL

- CL was introduced by (Kuusisto, 14), where it was also proved that it characterises the class of recursively enumerable languages. More precisely, for every Turing machine M we can find a sentence ϕ_M of CL s.t. for every finite (relational) structure \mathfrak{A} the following conditions hold.
 - $\ \, \mathfrak{A} \models \phi_M \text{ iff } M \text{ accepts } \mathfrak{A}$
 - $\ \, \mathfrak{A} \models \neg \phi_M \text{ iff } M \text{ rejects } \mathfrak{A}$
 - ϕ_M is indeterminate on \mathfrak{A} iff the computation of M on \mathfrak{A} diverges

Conversely, if ϕ is a sentence of CL, then $Mod(\phi)$ is a recursively enumerable set of models.

- CL extends standard first-order logic FO with two natural features.
 - The ability to modify the underlying model: adding new elements to the domain of the model, new tuples to relations, new relations etc.
 - The ability to use recursion (looping) via self-reference.

Recursion via self-reference

• Logics with different kinds of recursive looping capacities have been widely studied in the context of finite model theory.

・ロト ・回ト ・ヨト ・ヨト

2

Recursion via self-reference

 Logics with different kinds of recursive looping capacities have been widely studied in the context of finite model theory.

• FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

 $\forall x \forall y (\neg x = y \rightarrow [TC_{x,y} Exy] xy)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recursion via self-reference

- Logics with different kinds of recursive looping capacities have been widely studied in the context of finite model theory.
 - FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

$$\forall x \forall y (\neg x = y \rightarrow [\mathrm{TC}_{x,y} Exy] xy)$$

Captures NL over ordered finite structures.

Recursion via self-reference

- Logics with different kinds of recursive looping capacities have been widely studied in the context of finite model theory.
 - FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

$$\forall x \forall y (\neg x = y \rightarrow [\mathrm{TC}_{x,y} \mathsf{E} xy] xy)$$

Captures NL over ordered finite structures.

IFP: extension of FO with the least fixed point operator.

 $\forall x \forall y (\neg x = y \rightarrow [LFP_{x,y,X}(Exy \lor \exists z (Xxz \land Ezy))]xy)$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Recursion via self-reference

- Logics with different kinds of recursive looping capacities have been widely studied in the context of finite model theory.
 - FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

$$\forall x \forall y (\neg x = y \rightarrow [\mathrm{TC}_{x,y} \mathsf{E} xy] xy)$$

Captures NL over ordered finite structures.

IFP: extension of FO with the least fixed point operator.

 $\forall x \forall y (\neg x = y \rightarrow [LFP_{x,y,X}(Exy \lor \exists z (Xxz \land Ezy))]xy)$

Captures P over ordered finite structures.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Recursion via self-reference

- Logics with different kinds of recursive looping capacities have been widely studied in the context of finite model theory.
 - FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

$$\forall x \forall y (\neg x = y \rightarrow [\mathrm{TC}_{x,y} Exy] xy)$$

Captures NL over ordered finite structures.

IFP: extension of FO with the least fixed point operator.

$$\forall x \forall y (\neg x = y \rightarrow [LFP_{x,y,X}(Exy \lor \exists z (Xxz \land Ezy))]xy)$$

Captures P over ordered finite structures.

In CL the recursion is implemented via self-reference (or go-to statements).

$$\forall x \forall y (\neg x = y \rightarrow L(Exy \lor \exists z (Exz \land \exists x (x = z \land C_L))))$$

Recursion via self-reference

- Logics with different kinds of recursive looping capacities have been widely studied in the context of finite model theory.
 - FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

$$\forall x \forall y (\neg x = y \rightarrow [\mathrm{TC}_{x,y} Exy] xy)$$

Captures NL over ordered finite structures.

IFP: extension of FO with the least fixed point operator.

$$\forall x \forall y (\neg x = y \rightarrow [LFP_{x,y,X}(Exy \lor \exists z (Xxz \land Ezy))]xy)$$

Captures P over ordered finite structures.

In CL the recursion is implemented via self-reference (or go-to statements).

$$\forall x \forall y (\neg x = y \rightarrow L(Exy \lor \exists z (Exz \land \exists x (x = z \land C_L))))$$

Formulas are interpretated using game-theoretical semantics.

・ロト ・日ト ・ヨト ・ヨト

Recursion via self-reference

- Logics with different kinds of recursive looping capacities have been widely studied in the context of finite model theory.
 - FO[TC]: extension of FO that can compute the transitive closure of a binary relation.

$$\forall x \forall y (\neg x = y \rightarrow [\mathrm{TC}_{x,y} \mathsf{E} xy] xy)$$

Captures NL over ordered finite structures.

IFP: extension of FO with the least fixed point operator.

$$\forall x \forall y (\neg x = y \rightarrow [LFP_{x,y,\mathbf{X}}(Exy \lor \exists z (\mathbf{X}xz \land Ezy))]xy)$$

Captures P over ordered finite structures.

• In CL the recursion is implemented via self-reference (or go-to statements).

$$\forall x \forall y (\neg x = y \rightarrow L(Exy \lor \exists z (Exz \land \exists x (x = z \land C_L))))$$

Formulas are interpretated using *game-theoretical* semantics. We call the extension of FO with this type of recursion SCL (static computational logic).

Overview of the rest of the talk

- Syntax & Semantics of SCL.
- Validity problem of SCL.
- Some results on the model theory of SCL.

2

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Syntax of SCL

Definition

Fix a countable set $LBS = \{L_n \mid n \in \mathbb{N}\}$ of *label* symbols.

Definition

Fix a countable set LBS = { $L_n \mid n \in \mathbb{N}$ } of *label* symbols. For reach relational vocabulary τ the set of formulas $SCL[\tau]$ is defined by the following grammar:

$$\phi ::= x = y \mid R(\overline{x}) \mid C_L \mid \neg \phi \mid \phi \land \phi \mid \exists x \phi \mid L\phi,$$

where $R \in \tau$ and $L \in LBS$.

2

・ロト ・四ト ・ヨト ・ヨト

• We associate to each τ -structure \mathfrak{A} , assignment s and a formula ϕ of $SCL[\tau]$ a two-player game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$, which is played by Verifier and Falsifier.

イロト イポト イヨト イヨト 二日

• We associate to each τ -structure \mathfrak{A} , assignment s and a formula ϕ of $SCL[\tau]$ a two-player game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$, which is played by Verifier and Falsifier. We then define that

 $\mathfrak{A}, s \models \phi \Leftrightarrow$ Verifier has a winning strategy in the game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$.

• We associate to each τ -structure \mathfrak{A} , assignment s and a formula ϕ of $SCL[\tau]$ a two-player game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$, which is played by Verifier and Falsifier. We then define that

 $\mathfrak{A}, s \models \phi \Leftrightarrow$ Verifier has a winning strategy in the game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$.

We call \mathcal{G}_{∞} the unbounded evaluation game.

Positions of the game are triples (r, ψ, #), where r is the current assignment, ψ is a subformula
of φ and # ∈ {−, +}.

• We associate to each τ -structure \mathfrak{A} , assignment s and a formula ϕ of $SCL[\tau]$ a two-player game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$, which is played by Verifier and Falsifier. We then define that

 $\mathfrak{A}, s \models \phi \Leftrightarrow$ Verifier has a winning strategy in the game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$.

We call \mathcal{G}_{∞} the unbounded evaluation game.

Positions of the game are triples (r, ψ, #), where r is the current assignment, ψ is a subformula
of φ and # ∈ {−, +}. Initial position is just (s, φ, +).

• We associate to each τ -structure \mathfrak{A} , assignment s and a formula ϕ of $SCL[\tau]$ a two-player game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$, which is played by Verifier and Falsifier. We then define that

 $\mathfrak{A}, s \models \phi \Leftrightarrow$ Verifier has a winning strategy in the game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$.

We call \mathcal{G}_{∞} the unbounded evaluation game.

- Positions of the game are triples (r, ψ, #), where r is the current assignment, ψ is a subformula
 of φ and # ∈ {−, +}. Initial position is just (s, φ, +).
- Rules for first-order connectives and atomic formulas are standard. Some examples.

• We associate to each τ -structure \mathfrak{A} , assignment s and a formula ϕ of $SCL[\tau]$ a two-player game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$, which is played by Verifier and Falsifier. We then define that

 $\mathfrak{A}, s \models \phi \Leftrightarrow$ Verifier has a winning strategy in the game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$.

We call \mathcal{G}_{∞} the unbounded evaluation game.

- Positions of the game are triples (r, ψ, #), where r is the current assignment, ψ is a subformula
 of φ and # ∈ {−, +}. Initial position is just (s, φ, +).
- Rules for first-order connectives and atomic formulas are standard. Some examples.
 - Next position from $(r, \neg \psi, +)$ is $(r, \psi, -)$ and from $(r, \neg \psi, -)$ the next position is $(r, \psi, +)$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

• We associate to each τ -structure \mathfrak{A} , assignment s and a formula ϕ of $SCL[\tau]$ a two-player game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$, which is played by Verifier and Falsifier. We then define that

 $\mathfrak{A}, s \models \phi \Leftrightarrow$ Verifier has a winning strategy in the game $\mathcal{G}_{\infty}(\mathfrak{A}, s, \phi)$.

We call \mathcal{G}_{∞} the unbounded evaluation game.

- Positions of the game are triples (r, ψ, #), where r is the current assignment, ψ is a subformula
 of φ and # ∈ {−, +}. Initial position is just (s, φ, +).
- Rules for first-order connectives and atomic formulas are standard. Some examples.
 - Next position from (r, ¬ψ, +) is (r, ψ, −) and from (r, ¬ψ, −) the next position is (r, ψ, +).
 - If the position is $(r, \alpha, +)$, where α is an atomic formula, then Verifier wins if $\mathfrak{A}, r \models \alpha$ and otherwise Falsifier wins.

<ロ> (四) (四) (三) (三) (三) (三)

• Next position from $(r, L\psi, \#)$ is $(r, \psi, \#)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Game-theoretical semantics (GTS) for SCL

- Next position from $(r, L\psi, \#)$ is $(r, \psi, \#)$.
- Next position from $(r, C_L, \#)$ is $(r, Rf(C_L), \#)$, where $Rf(C_L)$ is the reference formula of C_L .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Game-theoretical semantics (GTS) for SCL

- Next position from $(r, L\psi, \#)$ is $(r, \psi, \#)$.
- Next position from $(r, C_L, \#)$ is $(r, \text{Rf}(C_L), \#)$, where $\text{Rf}(C_L)$ is the reference formula of C_L . It is defined as the subformula occurrence $L\psi$ such that there is a directed path from $L\psi$ to C_L in the syntax tree of ϕ , and L does not occur strictly between $L\psi$ and C_L on that path.

æ

Game-theoretical semantics (GTS) for SCL

- Next position from $(r, L\psi, \#)$ is $(r, \psi, \#)$.
- Next position from $(r, C_L, \#)$ is $(r, \text{Rf}(C_L), \#)$, where $\text{Rf}(C_L)$ is the reference formula of C_L . It is defined as the subformula occurrence $L\psi$ such that there is a directed path from $L\psi$ to C_L in the syntax tree of ϕ , and L does not occur strictly between $L\psi$ and C_L on that path.

Game-theoretical semantics (GTS) for SCL

- Next position from $(r, L\psi, \#)$ is $(r, \psi, \#)$.
- Next position from $(r, C_L, \#)$ is $(r, \text{Rf}(C_L), \#)$, where $\text{Rf}(C_L)$ is the reference formula of C_L . It is defined as the subformula occurrence $L\psi$ such that there is a directed path from $L\psi$ to C_L in the syntax tree of ϕ , and L does not occur strictly between $L\psi$ and C_L on that path.

• Neither player wins infinitely long plays.

• Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game \mathcal{G}_{∞} with the **bounded** evaluation game \mathcal{G}_{ω} .

2

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

- Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game \mathcal{G}_{∞} with the **bounded** evaluation game \mathcal{G}_{ω} .
- Given a triple (\mathfrak{A}, s, ϕ) , the game $\mathcal{G}_{\omega}(\mathfrak{A}, s, \phi)$ proceeds as follows.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game \mathcal{G}_{∞} with the **bounded** evaluation game \mathcal{G}_{ω} .
- Given a triple (\mathfrak{A}, s, ϕ) , the game $\mathcal{G}_{\omega}(\mathfrak{A}, s, \phi)$ proceeds as follows.

• Falsifier chooses a natural number $n' \in \mathbb{N}$.

3
- Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game \mathcal{G}_{∞} with the **bounded** evaluation game \mathcal{G}_{ω} .
- Given a triple (\mathfrak{A}, s, ϕ) , the game $\mathcal{G}_{\omega}(\mathfrak{A}, s, \phi)$ proceeds as follows.

• Falsifier chooses a natural number $n' \in \mathbb{N}$.

2 Verifier chooses a natural number $n \ge n'$.

3

・ロト ・四ト ・ヨト ・ヨト

- Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game \mathcal{G}_{∞} with the **bounded** evaluation game \mathcal{G}_{ω} .
- Given a triple (\mathfrak{A}, s, ϕ) , the game $\mathcal{G}_{\omega}(\mathfrak{A}, s, \phi)$ proceeds as follows.

• Falsifier chooses a natural number $n' \in \mathbb{N}$.

- **(2)** Verifier chooses a natural number $n \ge n'$.
- Solution Players play the game *n*-bounded evaluation game $\mathcal{G}_n(\mathfrak{A}, s, \phi)$.

3

- Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game \mathcal{G}_{∞} with the **bounded** evaluation game \mathcal{G}_{ω} .
- Given a triple (\mathfrak{A}, s, ϕ) , the game $\mathcal{G}_{\omega}(\mathfrak{A}, s, \phi)$ proceeds as follows.
 - Falsifier chooses a natural number $n' \in \mathbb{N}$.
 - 2 Verifier chooses a natural number $n \ge n'$.
 - Solution Players play the game *n*-bounded evaluation game $\mathcal{G}_n(\mathfrak{A}, s, \phi)$.
- The *n*-bounded evaluation game G_n works like G_∞ with the exception that looping atoms can be visited at most *n* times.

- Bounded SCL (BndSCL) is obtained from SCL by replacing the unbounded evaluation game \mathcal{G}_{∞} with the **bounded** evaluation game \mathcal{G}_{ω} .
- Given a triple (\mathfrak{A}, s, ϕ) , the game $\mathcal{G}_{\omega}(\mathfrak{A}, s, \phi)$ proceeds as follows.
 - Falsifier chooses a natural number $n' \in \mathbb{N}$.
 - 2 Verifier chooses a natural number $n \ge n'$.
 - Solution Players play the game *n*-bounded evaluation game $\mathcal{G}_n(\mathfrak{A}, s, \phi)$.
- The *n*-bounded evaluation game G_n works like G_∞ with the exception that looping atoms can be visited at most *n* times. If the players reach a looping atom after they have visited looping atoms *n* times, the game stops and neither player wins the game.

BndSCL vs SCL

Example

Consider the formula $\phi(x) := L(P(x) \lor \forall y(R(x, y) \to \exists x(x = y \land C_L)))$. Under unbounded semantics, ϕ is true at the "root" of the above structure, while under bounded semantics it is not true.

Definition

Let ϕ be a formula of SCL.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University)

First-order logic with game-theoretic recursion

April 20, 2023

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

10/23

Definition

Let ϕ be a formula of SCL. The *n*th unfolding of ϕ , denoted by Ψ_{ϕ}^{n} , is defined inductively as follows.

æ

Definition

Let ϕ be a formula of SCL. The *n*th unfolding of ϕ , denoted by Ψ_{ϕ}^{n} , is defined inductively as follows.

• The zeroeth unfolding Ψ^0_{ϕ} of ϕ is defined to be the formula ϕ .

Definition

Let ϕ be a formula of SCL. The *n*th unfolding of ϕ , denoted by Ψ_{ϕ}^{n} , is defined inductively as follows.

- The zeroeth unfolding Ψ^0_{ϕ} of ϕ is defined to be the formula ϕ .
- The (k+1)st unfolding Ψ^{k+1}_φ is the formula obtained from the kth unfolding Ψ^k_φ by replacing every looping atom C_L in Ψ^k_φ by the corresponding reference formula Rf(C_L) in Ψ^k_φ.

Definition

Let ϕ be a formula of SCL. The *n*th unfolding of ϕ , denoted by Ψ^n_{ϕ} , is defined inductively as follows.

- The zeroeth unfolding Ψ^0_{ϕ} of ϕ is defined to be the formula ϕ .
- The (k+1)st unfolding Ψ^{k+1}_φ is the formula obtained from the kth unfolding Ψ^k_φ by replacing every looping atom C_L in Ψ^k_φ by the corresponding reference formula Rf(C_L) in Ψ^k_φ.

Example

Consider the formula $\phi := \exists x L \exists y (R(x, y) \land C_L).$

Definition

Let ϕ be a formula of SCL. The *n*th unfolding of ϕ , denoted by Ψ_{ϕ}^{n} , is defined inductively as follows.

- The zeroeth unfolding Ψ^0_{ϕ} of ϕ is defined to be the formula ϕ .
- The (k + 1)st unfolding Ψ^{k+1}_φ is the formula obtained from the kth unfolding Ψ^k_φ by replacing every looping atom C_L in Ψ^k_φ by the corresponding reference formula Rf(C_L) in Ψ^k_φ.

Example

Consider the formula $\phi := \exists x L \exists y (R(x, y) \land C_L).$

•
$$\Psi^0_{\phi} := \exists x L \exists y (R(x, y) \land C_L).$$

Definition

Let ϕ be a formula of SCL. The *n*th unfolding of ϕ , denoted by Ψ_{ϕ}^{n} , is defined inductively as follows.

- The zeroeth unfolding Ψ^0_{ϕ} of ϕ is defined to be the formula ϕ .
- The (k + 1)st unfolding Ψ^{k+1}_φ is the formula obtained from the kth unfolding Ψ^k_φ by replacing every looping atom C_L in Ψ^k_φ by the corresponding reference formula Rf(C_L) in Ψ^k_φ.

Example

Consider the formula $\phi := \exists x L \exists y (R(x, y) \land C_L).$

•
$$\Psi^0_{\phi} := \exists x L \exists y (R(x, y) \land C_L).$$

•
$$\Psi^1_{\phi} := \exists x L \exists y (R(x, y) \land L \exists y (R(x, y) \land C_L))$$

Definition

Let ϕ be a formula of SCL. The *n*th unfolding of ϕ , denoted by Ψ^n_{ϕ} , is defined inductively as follows.

- The zeroeth unfolding Ψ^0_{ϕ} of ϕ is defined to be the formula ϕ .
- The (k+1)st unfolding Ψ^{k+1}_φ is the formula obtained from the kth unfolding Ψ^k_φ by replacing every looping atom C_L in Ψ^k_φ by the corresponding reference formula Rf(C_L) in Ψ^k_φ.

Example

Consider the formula $\phi := \exists x L \exists y (R(x, y) \land C_L).$

•
$$\Psi^0_{\phi} := \exists x L \exists y (R(x, y) \land C_L).$$

•
$$\Psi^1_{\phi} := \exists x L \exists y (R(x, y) \land L \exists y (R(x, y) \land C_L))$$

•
$$\Psi_{\phi}^2 := \exists x L \exists y (R(x, y) \land L \exists y (R(x, y) \land L \exists y (R(x, y) \land C_L)))$$

Definition

Let ϕ be a formula of SCL.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

Let ϕ be a formula of SCL. We define the *n*th approximant (or *n*-approximant) Φ^n_{ϕ} of ϕ to be the FO-formula obtained from the *n*th unfolding Ψ^n_{ϕ} by removing all the label symbols and replacing each occurrence of each looping atom by

・ロト ・四ト ・ヨト ・ヨト

Definition

Let ϕ be a formula of SCL. We define the *n*th approximant (or *n*-approximant) Φ_{ϕ}^{n} of ϕ to be the FO-formula obtained from the *n*th unfolding Ψ_{ϕ}^{n} by removing all the label symbols and replacing each occurrence of each looping atom by

• \perp if the occurrence of the atom is positive in Ψ_{ϕ}^{n} ,

ヘロト 人間 とくほ とくほとう

æ

Definition

Let ϕ be a formula of SCL. We define the *n*th approximant (or *n*-approximant) Φ_{ϕ}^{n} of ϕ to be the FO-formula obtained from the *n*th unfolding Ψ_{ϕ}^{n} by removing all the label symbols and replacing each occurrence of each looping atom by

- \perp if the occurrence of the atom is positive in Ψ_{ϕ}^{n} ,
- T if the occurrence is negative in Ψ_{ϕ}^{n} .

æ

ヘロト 人間 とくほ とくほとう

Definition

Let ϕ be a formula of SCL. We define the *n*th approximant (or *n*-approximant) Φ^n_{ϕ} of ϕ to be the FO-formula obtained from the *n*th unfolding Ψ^n_{ϕ} by removing all the label symbols and replacing each occurrence of each looping atom by

• \perp if the occurrence of the atom is positive in Ψ_{ϕ}^{n} ,

• T if the occurrence is negative in Ψ_{ϕ}^{n} .

Example

Recall the formula $\phi := \exists x L \exists y (R(x, y) \land C_L).$

Definition

Let ϕ be a formula of SCL. We define the *n*th approximant (or *n*-approximant) Φ^n_{ϕ} of ϕ to be the FO-formula obtained from the *n*th unfolding Ψ^n_{ϕ} by removing all the label symbols and replacing each occurrence of each looping atom by

- \perp if the occurrence of the atom is positive in Ψ_{ϕ}^{n} ,
- T if the occurrence is negative in Ψ_{ϕ}^{n} .

Example

Recall the formula $\phi := \exists x L \exists y (R(x, y) \land C_L)$. Since

 $\Psi_{\phi}^{2} := \exists x L \exists y (R(x, y) \land L \exists y (R(x, y) \land L \exists y (R(x, y) \land C_{L})))$

Definition

Let ϕ be a formula of SCL. We define the *n*th approximant (or *n*-approximant) Φ^n_{ϕ} of ϕ to be the FO-formula obtained from the *n*th unfolding Ψ^n_{ϕ} by removing all the label symbols and replacing each occurrence of each looping atom by

- If the occurrence of the atom is positive in Ψⁿ_φ,
- T if the occurrence is negative in Ψ_{ϕ}^{n} .

Example

Recall the formula $\phi := \exists x L \exists y (R(x, y) \land C_L)$. Since

$$\Psi_{\phi}^{2} := \exists x \mathsf{L} \exists y (\mathsf{R}(x, y) \land \mathsf{L} \exists y (\mathsf{R}(x, y) \land \mathsf{L} \exists y (\mathsf{R}(x, y) \land \mathsf{C}_{\mathsf{L}})))$$

we have that

$$\Phi_{\phi}^2 := \exists x \exists y (R(x,y) \land \exists y (R(x,y) \land \exists y (R(x,y) \land \bot)))$$

Lemma

Let ϕ be a formula of SCL.

Reijo Jaakkola reijo.jaakkola@tuni.fi (Tampere University)

First-order logic with game-theoretic recursion

April 20, 2023

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

12/23

Lemma

Let ϕ be a formula of SCL. Then for every structure ${\mathfrak A}$ and assignment s we have that

Verifier has a winning strategy in $\mathcal{G}_n(\mathfrak{A}, s, \phi) \Leftrightarrow \mathfrak{A}, s \models \Phi_{\phi}^n$

<ロト <四ト < 三ト < 三ト < 三ト < 三</p>

Lemma

Let ϕ be a formula of SCL. Then for every structure ${\mathfrak A}$ and assignment s we have that

Verifier has a winning strategy in $\mathcal{G}_n(\mathfrak{A}, s, \phi) \Leftrightarrow \mathfrak{A}, s \models \Phi_{\phi}^n$

Theorem

Let ϕ be a formula of BndSCL.

Lemma

Let ϕ be a formula of SCL. Then for every structure ${\mathfrak A}$ and assignment s we have that

Verifier has a winning strategy in $\mathcal{G}_n(\mathfrak{A}, s, \phi) \Leftrightarrow \mathfrak{A}, s \models \Phi_{\phi}^n$

Theorem

Let ϕ be a formula of BndSCL. Then for every structure $\mathfrak A$ and assignment s we have that

Verifier has a winning strategy in
$$\mathcal{G}_{\omega}(\mathfrak{A}, s, \phi) \Leftrightarrow \mathfrak{A}, s \models \bigvee_{n \in \mathbb{N}} \Phi_{\phi}^{n}$$

Lemma

Let ϕ be a formula of SCL. Then for every structure ${\mathfrak A}$ and assignment s we have that

Verifier has a winning strategy in $\mathcal{G}_n(\mathfrak{A}, s, \phi) \Leftrightarrow \mathfrak{A}, s \models \Phi_{\phi}^n$

Theorem

Let ϕ be a formula of BndSCL. Then for every structure $\mathfrak A$ and assignment s we have that

Verifier has a winning strategy in
$$\mathcal{G}_{\omega}(\mathfrak{A}, s, \phi) \Leftrightarrow \mathfrak{A}, s \models \bigvee_{n \in \mathbb{N}} \Phi_{\phi}^{n}$$

In particular, BndSCL $\leq \mathcal{L}^{\omega}_{\omega_1\omega}$.

12/23

$SCL \not\leq BndSCL$

イロン 不同 とくほど 不良 とうほ

$\mathsf{SCL} \not\leq \mathsf{BndSCL}$

Problem

Is BndSCL contained in SCL?

イロン 不同 とくほど 不良 とうほ

Theorem

Let ϕ be a sentence of BndSCL. Now ϕ is valid if and only if Φ_{ϕ}^{n} is valid, for some $n \in \mathbb{N}$.

<ロ> <四> <四> <四> <四> <四> <四</p>

Theorem

Let ϕ be a sentence of BndSCL. Now ϕ is valid if and only if Φ_{ϕ}^{n} is valid, for some $n \in \mathbb{N}$.

Proof.

(\Leftarrow) If Verifier has a winning strategy in $\mathcal{G}_n(\mathfrak{A}, \phi)$, then they have a winning strategy in $\mathcal{G}_\omega(\mathfrak{A}, \phi)$.

Theorem

Let ϕ be a sentence of BndSCL. Now ϕ is valid if and only if Φ_{ϕ}^{n} is valid, for some $n \in \mathbb{N}$.

Proof.

(\Leftarrow) If Verifier has a winning strategy in $\mathcal{G}_n(\mathfrak{A}, \phi)$, then they have a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{A}, \phi)$. (\Rightarrow) Suppose that $\neg \Phi_{\phi}^n$ is satisfiable, for every $n \in \mathbb{N}$. Since $\neg \Phi_{\phi}^n \models \neg \Phi_{\phi}^{n'}$, for every n' < n, using compactness we get that $\{\neg \Phi_{\phi}^n \mid n \in \mathbb{N}\}$ is satisfiable. Since ϕ is truth equivalent with $\bigvee_{n \in \mathbb{N}} \Phi_{\phi}^n$, there must exists a model \mathfrak{A} such that Verifier does not have a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{A}, \phi)$.

Theorem

Let ϕ be a sentence of SCL. Now ϕ is valid if and only if Φ_{ϕ}^{n} is valid, for some $n \in \mathbb{N}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem

Let ϕ be a sentence of SCL. Now ϕ is valid if and only if Φ^n_{ϕ} is valid, for some $n \in \mathbb{N}$.

Proof.

(\Leftarrow) If Verifier has a winning strategy in $\mathcal{G}_n(\mathfrak{A}, \phi)$, then they have a winning strategy in $\mathcal{G}_{\infty}(\mathfrak{A}, \phi)$.

Theorem

Let ϕ be a sentence of SCL. Now ϕ is valid if and only if Φ_{ϕ}^{n} is valid, for some $n \in \mathbb{N}$.

Proof.

(\Leftarrow) If Verifier has a winning strategy in $\mathcal{G}_n(\mathfrak{A}, \phi)$, then they have a winning strategy in $\mathcal{G}_{\infty}(\mathfrak{A}, \phi)$.

(⇒) If there exists for every $n \in \mathbb{N}$ a structure \mathfrak{A}_n such that Verifier does not have a winning strategy in $\mathcal{G}_n(\mathfrak{A}_n, \phi)$, then one can use compactness theorem for FO to construct a structure \mathfrak{A} such that Verifier does not have a winning strategy in $\mathcal{G}_{\infty}(\mathfrak{A}, \phi)$.

Theorem

Let ϕ be a sentence of SCL. Now ϕ is valid if and only if Φ^n_{ϕ} is valid, for some $n \in \mathbb{N}$.

Proof.

(\Leftarrow) If Verifier has a winning strategy in $\mathcal{G}_n(\mathfrak{A}, \phi)$, then they have a winning strategy in $\mathcal{G}_{\infty}(\mathfrak{A}, \phi)$.

(⇒) If there exists for every $n \in \mathbb{N}$ a structure \mathfrak{A}_n such that Verifier does not have a winning strategy in $\mathcal{G}_n(\mathfrak{A}_n, \phi)$, then one can use compactness theorem for FO to construct a structure \mathfrak{A} such that Verifier does not have a winning strategy in $\mathcal{G}_{\infty}(\mathfrak{A}, \phi)$.

Corollary

Valid sentences of BndSCL and SCL coincide.

Weakly complete axiomatization for SCL

 In our work we also developed a natural deduction style proof system which is weakly complete: if Σ is a set of FO-sentences and φ is a sentence of SCL, then Σ ⊨ φ iff Σ ⊢ φ in our system.

Weakly complete axiomatization for SCL

 In our work we also developed a natural deduction style proof system which is weakly complete: if Σ is a set of FO-sentences and φ is a sentence of SCL, then Σ ⊨ φ iff Σ ⊢ φ in our system.

$$\frac{\varphi[L\psi]}{\varphi[L\psi\{L\psi/C_L\}]} \updownarrow ({}^{LSubst1}) \quad \frac{\varphi[L\psi]}{\varphi[L\psi\{\psi/C_L\}]} \updownarrow ({}^{LSubst2})$$

$$\frac{\varphi[L\psi]}{\varphi[L'L\psi\{\neg C_{L'}/\neg C_L\}]} \updownarrow ({}^{LDual-Intro}) \quad \frac{\varphi[\psi]}{\varphi[L\psi]} \updownarrow ({}^{LDummy-Intro-Elim})$$

$$\frac{\varphi[L\psi]}{\varphi[L'\psi\{\{C_{L'}/C_L\}\}]} \updownarrow ({}^{LC_LRename}) \quad \frac{\varphi[C_L]}{\varphi[\psi/C_L]} \quad ({}^{C_LFree-Elim})$$
Weakly complete axiomatization for SCL

 In our work we also developed a natural deduction style proof system which is weakly complete: if Σ is a set of FO-sentences and φ is a sentence of SCL, then Σ ⊨ φ iff Σ ⊢ φ in our system.

$$\frac{\varphi[L\psi]}{\varphi[L\psi\{L\psi/C_L\}]} \updownarrow {}_{(LSubst1)} \frac{\varphi[L\psi]}{\varphi[L\psi\{\psi/C_L\}]} \updownarrow {}_{(LSubst2)}$$

$$\frac{\varphi[L\psi]}{\varphi[L'L\psi\{\neg C_{L'}/\neg C_L\}]} \updownarrow {}_{(LDual-Intro)} \frac{\varphi[\psi]}{\varphi[L\psi]} \updownarrow {}_{(LDummy-Intro-Elim)}$$

$$\frac{\varphi[L\psi]}{\varphi[L'\psi\{\{C_{L'}/C_L\}\}]} \updownarrow {}_{(LC_LRename)} \frac{\varphi[C_L]}{\varphi[\psi/C_L]} {}_{(C_LFree-Elim)}$$

The main idea is to show that for each formula φ we have that Φⁿ_φ ⊢ φ.

・ロト ・回ト ・ヨト ・ヨト

Weakly complete axiomatization for SCL

 In our work we also developed a natural deduction style proof system which is weakly complete: if Σ is a set of FO-sentences and φ is a sentence of SCL, then Σ ⊨ φ iff Σ ⊢ φ in our system.

$$\frac{\varphi[L\psi]}{\varphi[L\psi\{L\psi/C_L\}]} \updownarrow {}_{(LSubst1)} \frac{\varphi[L\psi]}{\varphi[L\psi\{\psi/C_L\}]} \updownarrow {}_{(LSubst2)}$$

$$\frac{\varphi[L\psi]}{\varphi[L'L\psi\{\neg C_{L'}/\neg C_L\}]} \updownarrow {}_{(LDual-Intro)} \frac{\varphi[\psi]}{\varphi[L\psi]} \updownarrow {}_{(LDummy-Intro-Elim)}$$

$$\frac{\varphi[L\psi]}{\varphi[L'\psi\{\{C_{L'}/C_L\}\}]} \updownarrow {}_{(LC_LRename)} \frac{\varphi[C_L]}{\varphi[\psi/C_L]} {}_{(C_LFree-Elim)}$$

- The main idea is to show that for each formula φ we have that Φⁿ_φ ⊢ φ.
- As an important step of our proof we show that our system can prove that every SCL sentence is equivalent to a sentence in **strong negation normal form**: negation only occurs in front of atomic FO-formulas.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Theorem

For every sentence ϕ of SCL^k there exists a sentence Ψ of ESO^k such that for every structure \mathfrak{A} we have the following equivalence

Verifier does not have a winning strategy in $\mathcal{G}_{\infty}(\mathfrak{A}, \phi) \Leftrightarrow \mathfrak{A} \models \Psi$

3

Theorem

For every sentence ϕ of SCL^k there exists a sentence Ψ of ESO^k such that for every structure \mathfrak{A} we have the following equivalence

Verifier does not have a winning strategy in $\mathcal{G}_{\infty}(\mathfrak{A},\phi) \Leftrightarrow \mathfrak{A} \models \Psi$

Furthermore, Ψ can be computed from ϕ in polynomial time

3

Theorem

For every sentence ϕ of SCL^k there exists a sentence Ψ of ESO^k such that for every structure \mathfrak{A} we have the following equivalence

Verifier does not have a winning strategy in $\mathcal{G}_{\infty}(\mathfrak{A},\phi) \Leftrightarrow \mathfrak{A} \models \Psi$

Furthermore, Ψ can be computed from ϕ in polynomial time

Corollary

• Every sentence of SCL^k can be translated in polynomial time to an equivalent sentence of $\forall SO^k$.

・ロット (四) () () ()

Theorem

For every sentence ϕ of SCL^k there exists a sentence Ψ of ESO^k such that for every structure \mathfrak{A} we have the following equivalence

Verifier does not have a winning strategy in $\mathcal{G}_{\infty}(\mathfrak{A},\phi) \Leftrightarrow \mathfrak{A} \models \Psi$

Furthermore, Ψ can be computed from ϕ in polynomial time

Corollary

• Every sentence of SCL^k can be translated in polynomial time to an equivalent sentence of $\forall SO^k$.

ONEXPTIME-complete.

Image: A math a math

Theorem

For every sentence ϕ of SCL^k there exists a sentence Ψ of ESO^k such that for every structure \mathfrak{A} we have the following equivalence

Verifier does not have a winning strategy in $\mathcal{G}_{\infty}(\mathfrak{A},\phi) \Leftrightarrow \mathfrak{A} \models \Psi$

Furthermore, Ψ can be computed from ϕ in polynomial time

Corollary

• Every sentence of SCL^k can be translated in polynomial time to an equivalent sentence of $\forall SO^k$.

O The validity problem for SCL² is CONEXPTIME-complete.

Problem

Are the satisfiability problems of $BndSCL^2$ and SCL^2 decidable? $BndSCL^2$ has the finite model property and SCL^2 does not have it.

・ロット (四) () () ()

Theorem

Let ϕ be a sentence of BndSCL or SCL and let \mathfrak{A} be a model of ϕ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem

Let ϕ be a sentence of BndSCL or SCL and let \mathfrak{A} be a model of ϕ . Then there exists a countable substructure \mathfrak{B} of \mathfrak{A} such that $\mathfrak{B} \models \phi$.

ヘロト 人間 とくほ とくほ とう

Theorem

Let ϕ be a sentence of BndSCL or SCL and let \mathfrak{A} be a model of ϕ . Then there exists a countable substructure \mathfrak{B} of \mathfrak{A} such that $\mathfrak{B} \models \phi$.

Proof.

Proof for SCL.

Theorem

Let ϕ be a sentence of BndSCL or SCL and let \mathfrak{A} be a model of ϕ . Then there exists a countable substructure \mathfrak{B} of \mathfrak{A} such that $\mathfrak{B} \models \phi$.

Proof.

Proof for SCL. Fix a (positional) winning strategy σ for the Verifier in the game $\mathcal{G}_{\infty}(\mathfrak{A}, \phi)$. We want to construct a countable model \mathfrak{B} so that Eloise has a winning strategy also in the game $\mathcal{G}_{\infty}(\mathfrak{B}, \phi)$.

イロト イヨト イヨト イヨト

Theorem

Let ϕ be a sentence of BndSCL or SCL and let \mathfrak{A} be a model of ϕ . Then there exists a countable substructure \mathfrak{B} of \mathfrak{A} such that $\mathfrak{B} \models \phi$.

Proof.

Proof for SCL. Fix a (positional) winning strategy σ for the Verifier in the game $\mathcal{G}_{\infty}(\mathfrak{A}, \phi)$. We want to construct a countable model \mathfrak{B} so that Eloise has a winning strategy also in the game $\mathcal{G}_{\infty}(\mathfrak{B}, \phi)$. Pick an arbitrary $b \in A$. We define a sequence of sets $(B_n)_{n \in \mathbb{N}}$ inductively such that, firstly $B_0 = \{b\}$, and then

$$B_{n+1} = B_n \cup \{d \mid \sigma((\exists x\psi, s, +)) = d\},\$$

where range(s) $\subseteq B_n$ and $\exists x \psi \in \text{Subf}(\phi)$. Let \mathfrak{B} be the substructure of \mathfrak{A} induced by the set $\bigcup_{n \in \mathbb{N}} B_n$. \mathfrak{B} is clearly countable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

• Craig interpolation property (CIP): if $\phi \models \psi$, then there exists a third sentence θ such that $\phi \models \theta \models \psi$ and θ contains only those relation symbols that occur in both of the sentences ϕ and ψ .

3

- Craig interpolation property (CIP): if φ ⊨ ψ, then there exists a third sentence θ such that φ ⊨ θ ⊨ ψ and θ contains only those relation symbols that occur in both of the sentences φ and ψ.
- Neither BndSCL nor SCL has CIP.

3

- Craig interpolation property (CIP): if $\phi \models \psi$, then there exists a third sentence θ such that $\phi \models \theta \models \psi$ and θ contains only those relation symbols that occur in both of the sentences ϕ and ψ .
- Neither BndSCL nor SCL has CIP.

Lemma

For every sentence ϕ of $SCL[\varnothing]$ there exists a finite structure \mathfrak{A} of even size and a finite structure \mathfrak{B} of odd size such that

 $\mathfrak{A}\models \phi \Rightarrow \mathfrak{B}\models \phi$

2

Some model theory

Failure of Craig interpolation

- Craig interpolation property (CIP): if φ ⊨ ψ, then there exists a third sentence θ such that φ ⊨ θ ⊨ ψ and θ contains only those relation symbols that occur in both of the sentences φ and ψ.
- Neither BndSCL nor SCL has CIP.

Lemma

For every sentence ϕ of $SCL[\varnothing]$ there exists a finite structure \mathfrak{A} of even size and a finite structure \mathfrak{B} of odd size such that

$$\mathfrak{A}\models\phi\Rightarrow\mathfrak{B}\models\phi$$

Proof.

Follows from the fact that over finite models SCL is contained in $\mathcal{L}^{\omega}_{\omega_1\omega}$.

Theorem

SCL does not have CIP.

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Theorem

SCL does not have CIP.

Proof.

Given a binary relation "<", there is a SCL sentence ϕ which states that

- Is a (total) linear order
- It the distance between the smallest and the largest element is finite.

In particular, ϕ projectively defines the class of finite models.

(日)、<回)、<三)、</p>

Theorem

SCL does not have CIP.

Proof.

Given a binary relation "<", there is a SCL sentence ϕ which states that

- Is a (total) linear order
- It the distance between the smallest and the largest element is finite.

In particular, ϕ projectively defines the class of finite models.

Fix two binary relation symbols E_1 and E_2 . It is easy to write sentences $\psi_1 \in FO[\{E_1\}]$ and $\psi_2 \in FO[\{E_2\}]$ such that

< ロ > < 回 > < 回 > < 回 > <</p>

Theorem

SCL does not have CIP.

Proof.

Given a binary relation "<", there is a SCL sentence ϕ which states that

- Is a (total) linear order
- It the distance between the smallest and the largest element is finite.

In particular, ϕ projectively defines the class of finite models.

Fix two binary relation symbols E_1 and E_2 . It is easy to write sentences $\psi_1 \in FO[\{E_1\}]$ and $\psi_2 \in FO[\{E_2\}]$ such that

• ψ_1 states that E_1 is an equivalence relation where each equivalence class has cardinality two

(日)、<回)、<三)、</p>

Theorem

SCL does not have CIP.

Proof.

Given a binary relation "<", there is a SCL sentence ϕ which states that

- Is a (total) linear order
- It the distance between the smallest and the largest element is finite.

In particular, ϕ projectively defines the class of finite models.

Fix two binary relation symbols E_1 and E_2 . It is easy to write sentences $\psi_1 \in FO[\{E_1\}]$ and $\psi_2 \in FO[\{E_2\}]$ such that

- ψ_1 states that E_1 is an equivalence relation where each equivalence class has cardinality two
- ψ_2 states that E_2 is an equivalence relation with one class of cardinality one while each other class has cardinality two.

イロト イボト イヨト イ

Theorem

SCL does not have CIP.

Proof.

Given a binary relation "<", there is a SCL sentence ϕ which states that

- Is a (total) linear order
- It the distance between the smallest and the largest element is finite.

In particular, ϕ projectively defines the class of finite models.

Fix two binary relation symbols E_1 and E_2 . It is easy to write sentences $\psi_1 \in FO[\{E_1\}]$ and $\psi_2 \in FO[\{E_2\}]$ such that

- ψ_1 states that E_1 is an equivalence relation where each equivalence class has cardinality two
- (a) ψ_2 states that E_2 is an equivalence relation with one class of cardinality one while each other class has cardinality two.

Clearly $\phi \wedge \psi_1 \models \neg \psi_2$. However, any interpolant between these sentences needs to distinguish each finite structure of even size from every finite structure of odd size.

・ロト ・回ト ・ヨト ・ヨト

Everywhere determined sentences

Theorem

Let ϕ be a sentence of SCL. If ϕ is determined everywhere, then there exists $n \in \mathbb{N}$ such that ϕ is equivalent with Φ^n_{ϕ} . In particular, any sentence of SCL which expresses a property that is not FO-definable is undetermined in some model.

・ロト ・回 ト ・ ヨト ・ ヨト … ヨ

Everywhere determined sentences

Theorem

Let ϕ be a sentence of SCL. If ϕ is determined everywhere, then there exists $n \in \mathbb{N}$ such that ϕ is equivalent with Φ^n_{ϕ} . In particular, any sentence of SCL which expresses a property that is not FO-definable is undetermined in some model.

Proof.

If ϕ is determined everywhere, then $\phi \lor \neg \phi$ is valid. This in turn implies that $\Phi^n_{\phi \lor \neg \phi} = \Phi^n_{\phi} \lor \Phi^n_{\neg \phi}$ is also valid, for some $n \in \mathbb{N}$. We claim that ϕ is equivalent with Φ^n_{ϕ} . First, we have that $\Phi^n_{\phi} \models \phi$. Secondly, since $\Phi^n_{\phi} \lor \Phi^n_{\neg \phi}$ is valid, we have that $\neg \Phi^n_{\phi} \models \Phi^n_{\neg \phi} \models \neg \phi$.

・ロト ・回 ト ・ ヨト ・ ヨト … ヨ

Everywhere determined sentences

Theorem

Let ϕ be a sentence of SCL. If ϕ is determined everywhere, then there exists $n \in \mathbb{N}$ such that ϕ is equivalent with Φ_{ϕ}^{n} . In particular, any sentence of SCL which expresses a property that is not FO-definable is undetermined in some model.

Proof.

If ϕ is determined everywhere, then $\phi \lor \neg \phi$ is valid. This in turn implies that $\Phi^n_{\phi \lor \neg \phi} = \Phi^n_{\phi} \lor \Phi^n_{\neg \phi}$ is also valid, for some $n \in \mathbb{N}$. We claim that ϕ is equivalent with Φ^n_{ϕ} . First, we have that $\Phi^n_{\phi} \models \phi$. Secondly, since $\Phi^n_{\phi} \lor \Phi^n_{\neg \phi}$ is valid, we have that $\neg \Phi^n_{\phi} \models \Phi^n_{\neg \phi} \models \neg \phi$.

• If we know that ϕ is determined everywhere, then we can effectively find an approximant Φ_{ϕ}^{n} which is equivalent with ϕ .

・ロ・・ 日本・ ・ 日本・ ・ 日本・

Theorem

Restrict attention to finite linearly ordered structures.

(日)

Theorem

Restrict attention to finite linearly ordered structures. For every sentence ϕ of SCL there exists a sentence ϕ' of SCL such that

*ロ * *部 * * 注 * * 注 * … 注

Theorem

Restrict attention to finite linearly ordered structures. For every sentence ϕ of SCL there exists a sentence ϕ' of SCL such that

 ${f 0}$ for every structure ${\mathfrak A}$ we have that

 $\mathfrak{A}\models\phi\Leftrightarrow\mathfrak{A}\models\phi'$

and

Theorem

Restrict attention to finite linearly ordered structures. For every sentence ϕ of SCL there exists a sentence ϕ' of SCL such that

 ${f 0}$ for every structure ${\mathfrak A}$ we have that

$$\mathfrak{A} \models \phi \Leftrightarrow \mathfrak{A} \models \phi'$$

and

2 ϕ' is determined in every structure.

3

Main open problems

- Are the satisfiability problems of BndSCL² and SCL² decidable?
- Is BndSCL contained in SCL?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Are the satisfiability problems of BndSCL² and SCL² decidable?
- Is BndSCL contained in SCL?

Thanks! :-)

ヘロト 人間 とくほ とくほとう