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Computational logic CL

▸ CL was introduced in (Kuusisto, 14), where it was also proved that it
characterises the class Σ0

1, i.e., the class of recursively enumerable languages.

▸ CL extends standard first-order logic FO with two novel features.

1. The ability to modify the underlying model: adding new elements to the
domain of the model, new tuples to relations and even new relations.

2. The ability to use recursion (looping) via self-reference.

FO extended with just recursion (2.) is called the static CL (SCL).

▸ SCL is in itself a very natural extension of FO and it bears some resembles
with the programming language IND introduced in (Harel & Kozen, 84).

▸ The purpose of this presentation is to present some very recent work on the
proof theory of SCL.
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Syntax of SCL

▸ We fix a set LBS = {Li ∣ i ∈ N} of label symbols.

▸ For each L ∈ LBS we have a corresponding reference symbol CL.

Definition
Let τ be a relational vocabulary. The set of formulas SCL[τ] is defined by the
following grammar:

φ ∶∶= R(x) ∣ CL ∣ ¬φ ∣ φ ∧ φ ∣ ∃xφ ∣ Lφ,

where R ∈ τ and L ∈ LBS.
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Game-theoretical semantics (GTS) for SCL

▸ We associate to each structure A, assignment s and a formula φ of SCL a
two-player game G∞(A, s, φ), which is essentially a reachability game.

▸ Important: neither player wins infinite plays.

▸ Positions of the game are triples (r , ψ,#), where r is the current
assignment, ψ is a subformula of φ and # ∈ {+,−}.

A, s ⊧ φ⇔ Verifier has a winning strategy in the game G∞(A, s, φ).
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▸ Rules of the game G∞(A, s, φ) are very natural.

▸ Game starts from the position (s, φ,+).
▸ First-order connectives are standard. E.g. in a position (r ,¬ψ,+) the game

continues from the position (r , ψ,−).
▸ From (r ,Lψ,#) the game proceeds to (r , ψ,#).
▸ From (r ,CL,#) the game can continue in two different ways.

1. If CL does not refer to a subformula of φ, then the game stops and neither
player wins.

2. If CL refers to a subformula ψ of φ, then the game proceeds to position
(r,ψ,#).
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Example

1. The formula CL is undetermined in every structure.

2. The sentence

∀x∀y(x = y ∨ L(Exy ∨ ∃z(Ezy ∧ ∃y(y = z ∧ CL))))

expresses that a graph is connected.

3. The sentence
¬∃xL∃y(y < x ∧ ∃x(x = y ∧ CL))

expresses that < is well-founded.
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Complexity of SCL

▸ Satisfiability problem for SCL is very hard...

▸ On the positive side, the validity problem for SCL is in Σ0
1.

▸ We were able to design a proof system S with the following property: for
every set Σ of FO-formulas and an SCL formula φ we have that

Σ ⊧ φ⇔ Σ ⊢S φ.

▸ Main technical tool are FO-formulas that ”approximate“ SCL formulas.
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▸ For every n ∈ N the game Gn(A, s, φ) is obtained from G∞(A, s, φ) by
requiring that looping can happen at most n-times.

▸ For every n ∈ N the nth approximant Φn
φ of φ describes the game Gn.

▸ Φn
φ is a first-order formula!

Proposition
Verifier has a winning strategy in Gn(A, s, φ) if and only if A, s ⊧ Φn

φ.
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Theorem
Let φ be a sentence of SCL. Suppose that for every n ∈ N there exists a structure
An such that Verifier does not have a winning strategy in the game Gn(An, φ).
Then there exists a structure A such that Verifier does not have a winning strategy
in the game G∞(A, φ).

Corollary
A sentence of SCL is valid if and only if one of its approximants is.
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Very rough sketch of the proof system

▸ Make the proof system FO-complete so that we can deduce all the valid
approximants.

▸ Add enough rules so that we can deduce from approximants the
corresponding SCL sentences.

▸ Unfortunately not so straightforward...
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Some open problems and future directions

▸ What is the complexity of the satisfiability problem of SCL2? In particular, is
it decidable?

▸ Design a useful model comparison game (or EF-game) for SCL.

▸ Developing simpler weakly complete proof systems for SCL.
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Thanks for listening! :) Questions?
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