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Introduction

> An important invariant of a logic L is the complexity of its satisfiability
problem, i.e., the problem of determining whether a given sentence of L is
satisfiable (in other words has a model).

> A classical result of Church and Turing is that the satisfiability problem for
full first-order logic FO is undecidable. This result led researches to focus
their study on fragments of FO (essentially computable sets £ € FO) with
the hope that expressive logics with decidable satisfiability problem could be
identified.

> An important example of an interesting decidable fragment of FO is the
two-variable logic FO? (every sentence can contain at most two variables).
This logic is decidable because it has the following bounded model property:
if pe FO? is satisfiable, then it has a model of size at most 2lel,
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Introduction

> Recently there has been an increasing interest in studying fragments that we
will refer to as the ordered fragments of FO. These were originally
introduced independently by Quine and Herzig.

> Main idea: Restrict the order in which variables can be quantified, the way
variables can be permuted in atomic formulas and the manner in which
boolean combinations of formulas can be formed.

> This talk: We will go through the syntax of the two most well-known
ordered fragments (ordered logic, fluted logic) and their complexities. In
addition, we will take a brief look at some recent results on the complexities
of their variants (with respect to the satisfiability problem).
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Let v, = (v1, v2,...) be an infinite sequence of variables and let 7 be a vocabulary.
For every k € N we define sets OL*[7] as follows.

1. Let R e 7 be an k-ary relational symbol and consider the prefix
(Vi i)
of V. Now R(vi, ..., vi) € OLX[7].
2. If p,9p € OLX[7], then —¢, (p A ¥) € OLF[7].
3. If ¢ e OL*"*[7], then 3vj1 € OL¥[7].
Finally we define OL[7] := U, OL¥[7].
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Example

Vvi(=P(vi) A 3vaR(v1,v2)) is a sentence of OL[{P, R}], while 3v;IvaR(va, v1),
Ivo3viR(vi, v2) and Ivi3va(P(v2) A R(va,v2)) are not.
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> One can prove that OL has the following bounded model property: if ¢ € OL
has a model, then it has one of size at most |¢|.

> Main idea: OL can't enforce that there exists more than |p|-many elements
with distinct (quantifier-free) unary types.

Theorem (J.)
Over bounded vocabularies the satisfiability problem of OL is NP-complete.

Theorem (Herzig, J.)

The satisfiability problem of OL is PSPACE-complete.
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Fluted logic

Let V,, = (v1, v2,...) be an infinite sequence of variables and let 7 be a vocabulary.
For every k € N, we define sets FL*[7] as follows.

1. Let R e 7 be an n-ary relation symbol and consider the subsequence
(Vk=n1s -5 Vk)
of V. Now R(Vk—pt1,---,Vk) € FLk[T].
2. For every ¢, € FLX[7], we have that —¢, (p A ¥) € FL¥[7].
3. If ¢ e FL***[7], then 3vj;1¢ € FL¥[7].
Finally, we define FL[7] := U, FL*[7].

Note that OL c FL.

Example

Jvidva(P(v2) A R(v1,v2)) is a sentence of FL[{P, R}], while
JviIve3vs(R(vi, v2) A R(v2,v3)) is not.
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» FL also has a bounded model property: if ¢ € FL has a model, then it has
one of size at most
2%
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for some constant k.

» Main idea of proof: For each k > 2 and ¢ € FL**D | there exists ¢’ € FL¥
so that ¢ has a model iff ¢’ has, |¢| = 2°U¢D and if ¢’ has a model of size
N, then ¢ has a model of size at most |p|N.

Theorem (Pratt-Hartmann, Swast, Tendera)

The satisfiability problem of FL is TOWER-complete.
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> Originally some of the ordered fragments were discovered by Quine as a
by-product of his (eventually successful) attempt at giving a variable-free
syntax for FO (predicate functor logic(s)).

> OL can be seen as consisting of three (relational) algebraic operators:
complement —, intersection N and projection 3.

> Similarly, FL consists of —, 3 and the so-called suffix intersection 1 (allows
one to compute intersections of relations that have different arities).

> This point of view suggests naturally several syntactical variants of, say, OL
and FL (simply add or remove algebraic operators).
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Brief summary of recent complexity results

> Adding (restricted) use of equality either to OL or FL does not affect
complexity.

> Adding a swap operator (swap the last two elements in every tuple) increases
complexity significantly: OL becomes NEXPTIME-complete while FL
becomes undecidable.

> Replacing 3 with one-dimensional quantification (select at most the first
element from every tuple) decreases complexity: OL becomes NP-complete
while FL. becomes NEXPTIME-complete. One-dimensional FL remains
NExpPTIME-complete even in the presence of equality and swap.
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> Ordered fragments present a fresh viewpoint on the question of what makes
satisfiability problems decidable (feasible).

Looking at intersections of ordered fragments with guarded fragments seems
to be a very promising research direction (modal logics often have
variable-free syntax).

How much can we extend the expressive power of the fluted logic while
preserving its decidability?

Thanks! :-)
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