Description Complexity of Unary Structures in First-Order Logic with Links to Entropy

Reijo Jaakkola, Antti Kuusisto, Miikka Vilander

Mathematics Research Centre, Tampere University, Finland

February 13, 2025

1/13

Description complexity (in FO)

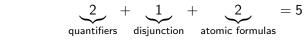
 Given a τ-structure M of size n, its description complexity C(M) is the size of the smallest sentence φ ∈ FO[τ] with the following property: for every τ-structure M of size n we have that

$$\mathfrak{N}\models\varphi\Leftrightarrow\mathfrak{N}\cong\mathfrak{M}.$$

• **Example:** The clique G of size n is described by the sentence

$$\forall x \forall y (x = y \lor E(x, y)).$$

This sentence has size

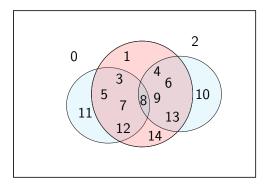


so $C(G) \leq 5$ (and in fact C(G) = 5).

• Unary structure (of size *n*) over $\tau = \{P_1, \ldots, P_k\}$ is a tuple

$$\mathfrak{M} := ([n], P_1^{\mathfrak{M}}, \ldots, P_k^{\mathfrak{M}}),$$

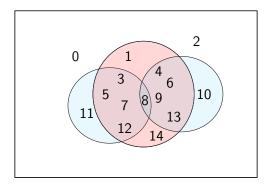
where $[n] := \{0, \dots, n-1\}$ and $P_1^{\mathfrak{M}}, \dots, P_k^{\mathfrak{M}} \subseteq [n]$.



Unary structures

• **Terminology:** a type is $\pi \subseteq \{P_1, \ldots, P_k\}$. A type π is realized in \mathfrak{M} if there is $i \in [n]$ such that $i \in P^{\mathfrak{M}}$ iff $P \in \pi$. We write

 $|\pi| := |\{i \in [n] \mid i \text{ realizes } \pi\}|$



- What is the description complexity of a unary structure?
- The naive formula

$$\bigwedge_{\ell=1}^{2^{|\tau|}} \exists x_1 \ldots \exists x_{|\pi_\ell|} \bigg(\bigwedge_{i=1}^{|\pi_\ell|} \pi_\ell(x_i) \land \bigwedge_{j=i+1}^{|\pi_\ell|} x_i \neq x_j \bigg),$$

has size $\mathcal{O}(n^2)$.

Theorem

Let \mathfrak{M} be a unary structure. Let $T = \{\pi_1, \ldots, \pi_\ell\}$ be the types realized in \mathfrak{M} , enumerated in ascending order of numbers of realizing points. We have

$$\mathcal{C}(\mathfrak{M}) \leq \min(3|\pi_{\ell}|, 6|\pi_{\ell-1}|) + \mathcal{O}(1).$$

Theorem

Let \mathfrak{M} be a unary structure. Let $T = \{\pi_1, \ldots, \pi_\ell\}$ be the types realized in \mathfrak{M} , enumerated in ascending order of numbers of realizing points. Now

 $C(\mathfrak{M}) \geq 3|\pi_{\ell-1}| - 3.$

Proof idea.

Proof via a formula size game for FO-sentences in prenex normal form.

- **(**) Show that the prefix needs to have $|\pi_{\ell-1}|$ quantifiers.
- 2 Show that the quantifier-free part needs to contain $|\pi_{\ell-1}| 1$ atomic formulas.

- We use FO_d to denote the set of sentences of FO which have quantifier rank $\leq d$.
- Given a unary structure \mathfrak{M} of size n we define

 $[\mathfrak{M}]_d := \{\mathfrak{N} \mid \mathfrak{N} \text{ has size } n \text{ and } \mathfrak{M} \equiv_d \mathfrak{N} \}.$

- $C_d(\mathfrak{M})$ is the size of the shortest formula in FO_d which defines $[\mathfrak{M}]_d$.
- Form of lossy compression.

Theorem

Let \mathfrak{M} be a unary structure. Let $T = \{\pi_1, \ldots, \pi_\ell\}$ be the types realized in \mathfrak{M} , enumerated in ascending order of numbers of realizing points. Let r be the largest index for which $|\pi_r| < d$.

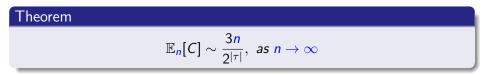
$$C_d(\mathfrak{M}) \leq 3d + 3|\pi_r| + \mathcal{O}(1).$$

② If $|\pi_{\ell-1}| < d$, then $C_d(\mathfrak{M}) \le 6|\pi_{\ell-1}| + O(1)$.

Let

$$\mathbb{E}_{\boldsymbol{n}}[C] := \frac{1}{2^{|\tau|\boldsymbol{n}}} \sum_{\mathfrak{M}} C(\mathfrak{M})$$

be the expected description complexity of a random τ -model of size n.



Proof.

With high probability, the types in a random unary structure of size n are realized roughly the same number of times. For such structures our formula size bounds match up to a sublinear additive term.

- Intuitively $C(\mathfrak{M})$ measures the "randomness" of \mathfrak{M} .
- Another way to measure the randomness of \mathfrak{M} is its entropy.
- For \mathfrak{M} its Boltzmann entropy is

 $H_B(\mathfrak{M}) := \log(|\{\mathfrak{N} \mid \mathfrak{M} \cong \mathfrak{N}\}|),$

while its Shannon entropy $H_S(\mathfrak{M})$ looks at the type distribution.

• For large *n* we have

$$\frac{1}{n}H_B(\mathfrak{M})\sim H_S(\mathfrak{M}),$$

where $\mathfrak{M}, \mathfrak{N}$ have size *n*.

Links to entropy

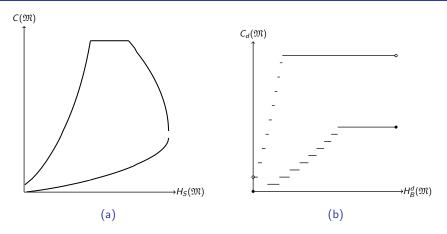


Figure: Figure 1a on the left shows an area that encapsulates all combinations of Shannon entropy and FO-description complexity for the values $|\tau| = 2$ and n = 1000. Figure 1b concerns the case of FO_d and shows bounds on description complexity in terms of Boltzmann entropy for values $|\tau| = 2$, n = 100 and d = 10.

- Almost sharp bounds on the description complexity of unary structures.
- Some connections between description complexity and entropy.
 - Surprisingly, in the case of full FO the hardest structures to describe do not have maximal entropy.
 - In the case of FO_d there seems to be a monotone connection. This has been established in a simpler context in [Jaakkola et. al., 2023].

• Some future directions:

- Sharper bounds on the description complexity of unary structures.
- Description complexity of graphs.

Thanks!