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What is randomness?

Is the binary string
010101010101010101

less random than
101110111110111101

?
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Kolmogorov complexity

The Kolmogorov complexity K (x) of a binary string x is the length of
the shortest program P that produces x .

Intuitively, the larger K (x) is the more random x is.

Example: the string

010101010101010101

is produced by the program “print 01 nine times”.
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Kolmogorov complexity

K (x) = O(|x |).
For most x ∈ {0, 1}n we have that K (x) ≥ |x | by a counting
argument.

Reijo Jaakkola (Tampere University) Description Complexity November 27, 2024 5 / 18



Description complexity

The description complexity D(x) of a binary string x is the length of
the shortest program P that only accepts x .

D(x) ≈ K (x).

Example: the string

010101010101010101

is described by “starts with 0, 0 and 1 alternate, has length 18”.
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Conditional description complexity

D(x : |x |) is the length of the shortest program which, when given a
string of length |x |, accepts it only if it is x .

Example: in this setting the string

010101010101010101

is described by “starts with 0, 0 and 1 alternate”.
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Link to logic

We move now from binary strings to general finite structures (e.g.,
strings, graphs, groups).

Given a logic L and a structure A, we define DL(A) as

min

{
len(φ)

∣∣∣∣ φ ∈ L and φ defines A uniquely up to isomorphism
among structures of the same size

}
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Example: finite graphs

A graph is a pair G = (V ,E ), where V is a set and

E ⊆ {{v , u} | v , u ∈ V , v ̸= u}.

Let L be the first-order logic FO.

The clique of size n is described by the sentence

∀x∀y(x = y ∨ E (x , y)).

This sentence has size

2︸︷︷︸
quantifiers

+ 1︸︷︷︸
disjunction

+ 2︸︷︷︸
atomic formulas

so DFO(G ) ≤ 5.

Every finite graph can be defined in FO up to isomorphism.
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Description complexity is hard to understand

The main challenge in studying DL is that even for simple structures
it is very difficult to calculate it.

Open problem: we know that for most graphs G of size n we have
that

DFO(G ) = Ω

(
n2

log(n)

)
but we do not know whether

DFO(G ) = Θ

(
n2

log(n)

)
holds for most graphs.
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Unary structures

The simplest possible structures are the unary structures.

Unary structure is a tuple (A,P1, . . . ,Pk), where A is a set and
P1, . . . ,Pk ⊆ A.
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Terminology: a type is I ⊆ {1, . . . , k}. A type I is realized in
(A,P1, . . . ,Pk) if there is a ∈ A such that a ∈ Pℓ iff ℓ ∈ I .
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Propositional logic with counting (PLC)

In PLC we can say how many times a Boolean combination of unary
relations occurs in a unary structure A = (P1, . . . ,Pk).

Examples:
∃=5x P1(x) ∃≥2x(P1(x) ∨ ¬P2(x))

∃=3x P1(x) ∧ ∃=5xP2(x)

The size of e.g. ∃=5x P1(x) is

1︸︷︷︸
existential quantifier

+ 5︸︷︷︸
index

+ 1︸︷︷︸
atomic formula

Every (finite) unary structure can be defined uniquely up to
isomorphism in PLC.
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Some results on PLC

Theorem (J., Kuusisto, Vilander, 2023)

For every unary structure M of size n we have that

DPLC(M) = min(n, 2(n − t)) +O(1),

where t is the size of the largest type in M.

For most unary structures M of size n we have that

DPLC(M) = n + k2k+1 − 1,

where k is the number of unary structures. Hence

E
M
(DPLC(M)) ∼ n,

as n → ∞.
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Monadic first-order logic (MFO)

FO over unary vocabularies.

Example: ∀x(¬P(x) ∨ ∃y(¬x = y ∧ Q(y))). This formula has size

2︸︷︷︸
quantifiers

+ 4︸︷︷︸
Boolean connectives

+ 3︸︷︷︸
atomic formulas

Every (finite) unary structure can be defined uniquely up to
isomorphism in MFO.
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Some results on MFO

Theorem (J., Kuusisto, Vilander, 2024)

1 Let M be a unary structure of size n, t1 the size of the largest type in
M and t2 the size of the second largest type in M. Now

3t2 − 3 ≤ DMFO(M) ≤ min(3t1, 6t2) + O(1).

2 For a random unary structure M of size n we have that

E
M
(DMFO(M)) ∼ 3n

2k

as n → ∞.
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Lossy compression in PLC

For each d ≥ 0 we define PLCd as the set of those formulas of PLC
which can count only up to d .

Given a structure M of size n we define

[M]d := {N | N has size n, M and N are PLCd equivalent}.

DPLCd (M) is the description complexity of [Md ].
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Lossy compression in PLC

Theorem (J., Kuusisto, Vilander, 2023)

Let M be a unary structure of size n. Let I1, . . . , Ir denote the types
realized in M. Define

ts := min{size of IS , d}.

Now either

DPLCd (M) =
r∑

s=1

ts + O(1)

or
DPLCd (M) = n −max{ts | 1 ≤ s ≤ r}+ O(1).
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Conclusions

Description complexity is a way of measuring the randomness of a
deterministic object.

A lot of recent progress on understanding the description complexity
of unary structures.

For more complex structures such as graphs and binary strings much
remains to be done.

Thanks!
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